Sarafan ChEM-H


Showing 201-226 of 226 Results

  • Sindy Tang

    Sindy Tang

    Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology and of Bioengineering

    Current Research and Scholarly InterestsThe long-term goal of Dr. Tang's research program is to harness mass transport in microfluidic systems to accelerate precision medicine and material design for a future with better health and environmental sustainability.

    Current research areas include: (I) Physics of droplets in microfluidic systems, (II) Interfacial mass transport and self-assembly, and (III) Applications in food allergy, single-cell wound repair, and the bottom-up construction of synthetic cell and tissues in close collaboration with clinicians and biochemists at the Stanford School of Medicine, UCSF, and University of Michigan.

    For details see https://web.stanford.edu/group/tanglab/

  • Hawa Racine Thiam

    Hawa Racine Thiam

    Assistant Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsCellular Biophysical Mechanisms of Innate Immune Cells Functions

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from protein engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational design.

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    Current Research and Scholarly InterestsUbiquitin signaling: structure, function, and therapeutics
    Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
    We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.

    Protein self-assembly processes and applications.
    The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.

    Multiscale imaging and technology developments.
    Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators.

  • Taia T. Wang, MD, PhD, MSCI

    Taia T. Wang, MD, PhD, MSCI

    Associate Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsLaboratory of Mechanisms in Human Immunity and Disease Pathogenesis

  • Xinnan Wang

    Xinnan Wang

    Professor of Neurosurgery

    Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Robert Waymouth

    Robert Waymouth

    Robert Eckles Swain Professor of Chemistry and Professor, by courtesy, of Chemical Engineering

    BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including bioactive polymers, synthetic fuels, and sustainable plastics. In one such breakthrough, Professor Waymouth and Professor Wender developed a new class of gene delivery agents.

    Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.

    Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. In collaboration with Dr. James Hedrick of IBM, we have developed a platform of highly active organic catalysts and continuous flow reactors that provide access to polymer architectures that are difficult to access by conventional approaches.

    The Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver genes, drugs and probes into cells and live animals. These advances led to the joint discovery with the Wender group of a general, safe, and remarkably effective concept for RNA delivery based on a new class of synthetic cationic materials, Charge-Altering Releasable Transporters (CARTs). This technology has been shown to be effective for mRNA based cancer vaccines.

  • William Weis

    William Weis

    Member, Bio-X

    Current Research and Scholarly InterestsOur laboratory studies molecular interactions that underlie the establishment and maintenance of cell and tissue structure. Our principal areas of interest are the architecture and dynamics of intercellular adhesion junctions, signaling pathways that govern cell fate determination, and determinants of cell polarity. Our overall approach is to reconstitute macromolecular assemblies with purified components in order to analyze them using biochemical, biophysical and structural methods.

  • Paul Wender

    Paul Wender

    Francis W. Bergstrom Professor and Professor, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsMolecular imaging, therapeutics, drug delivery, drug mode of action, synthesis

  • Albert Y. Wu, MD, PhD, FACS

    Albert Y. Wu, MD, PhD, FACS

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsMy translational research focuses on using autologous stem cells to recreate a patient’s ocular tissues for potential transplantation. We are generating tissue from induced pluripotent stem cells to treat limbal stem cell deficiency in patients who are bilaterally blind. By applying my background in molecular and cellular biology, stem cell biology, oculoplastic surgery, I hope to make regenerative medicine a reality for those suffering from orbital and ocular disease.

  • Joseph  C. Wu, MD, PhD

    Joseph C. Wu, MD, PhD

    Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology

    Current Research and Scholarly InterestsDrug discovery, drug screening, and disease modeling using iPSC.

  • Haopeng Xiao

    Haopeng Xiao

    Assistant Professor of Biochemistry

    BioUnderstanding mechanisms of metabolic regulation in physiology and disease forms the basis for developing therapies to treat diseases in which metabolism is perturbed. We devise novel mass spectrometry (MS)-based proteomics technologies, combined with data science, to systematically discover mechanisms of metabolic regulation over protein function. Our strategies established the first tissue-specific landscape of protein cysteine redox regulation during aging, elucidating mechanisms of redox signaling in physiology that remained elusive for decades. We also leverage the genetic diversity of outbred populations to systematically annotate protein function and protein-metabolite co-regulation. The aim of our research program is to develop next-generation MS-based strategies to understand mechanisms of metabolic regulation in aging, metabolic disease, and cancer, and to use this knowledge as a basis to develop translational therapeutics.

  • Priscilla Li-ning Yang

    Priscilla Li-ning Yang

    Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsWe apply chemical biology approaches to study fundamental virological processes and to develop antivirals with novel mechanisms of action.

  • Ellen Yeh

    Ellen Yeh

    Associate Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur research program focuses on understudied microbial ecology as solutions for planet health. We select organisms with important functional traits to understand their evolution, role in the environment, and potential for bioengineering toward sustainability solutions. We are currently working on nitrogen-fixing cyanobacteria and algae, genetic screens in diatoms, and algal biofuels.

  • Renee Zhao

    Renee Zhao

    Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioRuike Renee Zhao is an Assistant Professor of Mechanical Engineering at Stanford University where she directs the Soft Intelligent Materials Laboratory. Renee received her BS degree from Xi'an Jiaotong University in 2012, and her MS and PhD degrees from Brown University in 2014 and 2016, respectively. She was a postdoc associate at MIT during 2016-2018 prior to her appointment as an Assistant Professor in the Department of Mechanical and Aerospace Engineering at The Ohio State University from 2018 to 2021.

    Renee’s research focuses on the development of stimuli-responsive soft composites for multifunctional robotic systems with integrated shape-changing, assembling, sensing, and navigation. By combining mechanics, polymer engineering, and advanced material manufacturing techniques, the functional soft composites enable applications in soft robotics, miniaturized biomedical devices, flexible electronics, and deployable and morphing structures.

    Renee is a recipient of the ARO Early Career Program (ECP) Award (2023), AFOSR Young Investigator Research Program (YIP) Award (2023), Eshelby Mechanics Award for Young Faculty (2022), ASME Henry Hess Early Career Publication Award (2022), ASME Pi Tau Sigma Gold Medal (2022), ASME Applied Mechanics Division Journal of Applied Mechanics Award (2021), NSF Career Award (2020), and ASME Applied Mechanics Division Haythornthwaite Research Initiation Award (2018).

  • J. Bradley Zuchero

    J. Bradley Zuchero

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsWe are primarily focused on understanding myelinating glia (oligodendrocytes and Schwann cells). How is myelin formed, dynamically remodeled to support learning, and why does regeneration of myelin fail in disease? We are also interested in understanding novel roles of myelin in the nervous system, beyond its textbook role as an electrical insulator. We combine in vivo and primary culture models with the generation of new cell biology tools to answer these questions.