Sarafan ChEM-H


Showing 101-150 of 216 Results

  • Paul S Humphries

    Paul S Humphries

    Alliance Director, Sarafan ChEM-H

    Current Role at StanfordAlliance Director, Stanford Innovative Medicines Accelerator (IMA)

  • Juliana Idoyaga

    Juliana Idoyaga

    Assistant Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe Idoyaga Lab is focused on the function and biology of dendritic cells, which are specialized antigen-presenting cells that initiate and modulate our body’s immune responses. Considering their importance in orchestrating the quality and quantity of immune responses, dendritic cells are an indisputable target for vaccines and therapies.

    Dendritic cells are not one cell type, but a network of cells comprised of many subsets or subpopulations with distinct developmental pathways and tissue localization. It is becoming apparent that each dendritic cell subset is different in its capacity to induce and modulate specific types of immune responses; however, there is still a lack of resolution and deep understanding of dendritic cell subset functional specialization. This gap in knowledge is an impediment for the rational design of immune interventions. Our research program focuses on advancing our understanding of mouse and human dendritic cell subsets, revealing their endowed capacity to induce distinct types of immune responses, and designing novel strategies to exploit them for vaccines and therapies.

  • Peter K.  Jackson

    Peter K.  Jackson

    Professor of Microbiology and Immunology (Baxter Labs) and of Pathology

    Current Research and Scholarly InterestsCell cycle and cyclin control of DNA replication .

  • Christine Jacobs-Wagner

    Christine Jacobs-Wagner

    Dennis Cunningham Professor, Professor of Biology and of Microbiology and Immunology

    BioChristine Jacobs-Wagner is a Dennis Cunningham Professor in the Department of Biology and the ChEM-H Institute at Stanford University. She is interested in understanding the fundamental mechanisms and principles by which cells, and, in particular, bacterial cells, are able to multiple. She received her PhD in Biochemistry in 1996 from the University of Liège, Belgium where she unraveled a molecular mechanism by which some bacterial pathogens sense and respond to antibiotics attack to achieve resistance. For this work, she received multiple awards including the 1997 GE & Science Prize for Young Life Scientists. During her postdoctoral work at Stanford Medical School, she demonstrated that bacteria can localize regulatory proteins to specific intracellular regions to control signal transduction and the cell cycle, uncovering a new, unsuspected level of bacterial regulation.

    She started her own lab at Yale University in 2001. Over the years, her group made major contributions in the emerging field of bacterial cell biology and provided key molecular insights into the temporal and spatial mechanisms involved in cell morphogenesis, cell polarization, chromosome segregation and cell cycle control. For her distinguished work, she received the Pew Scholars award from the Pew Charitable Trust, the Woman in Cell Biology Junior award from the American Society of Cell Biology and the Eli Lilly award from the American Society of Microbiology. She held the Maxine F. Singer and William H. Fleming professor chairs at Yale. She was elected to the Connecticut academy of Science, the American Academy of Microbiology and the National Academy of Sciences. She has been an investigator of the Howard Hughes Medical Institute since 2008.

    Her lab moved to Stanford in 2019. Current research examines the general principles and spatiotemporal mechanisms by which bacterial cells replicate, using Caulobacter crescentus and Escherichia coli as models. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease

  • Amy Jacobson

    Amy Jacobson

    Director of Microbiome Therapies, Microbiome Therapies Initiative (MITI)

    Current Role at StanfordSenior Scientific Program Manager, Sarafan ChEM-H and Stanford Innovative Medicines Accelerator

  • Daniel Jarosz

    Daniel Jarosz

    Associate Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.

  • Paul A. Khavari, MD, PhD

    Paul A. Khavari, MD, PhD

    Carl J. Herzog Professor of Dermatology in the School of Medicine

    Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Peter S. Kim

    Peter S. Kim

    Virginia and D. K. Ludwig Professor of Biochemistry
    On Partial Leave from 09/01/2023 To 06/30/2024

    Current Research and Scholarly InterestsWe are studying the mechanism of viral membrane fusion and its inhibition by drugs and antibodies. We use the HIV envelope protein (gp120/gp41) as a model system. Some of our studies are aimed at creating an HIV vaccine. We are also characterizing protein surfaces that are referred to as "non-druggable". These surfaces are defined empirically based on failure to identify small, drug-like molecules that bind to them with high affinity and specificity.

  • Karla Kirkegaard

    Karla Kirkegaard

    Violetta L. Horton Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.

  • Bruce Koch, Ph.D.

    Bruce Koch, Ph.D.

    Director, High-Throughput Screening

    Current Role at StanfordHead, ChEM-H/CSB High Throughput Screening Knowledge Center (HTSKC)
    Staff Co-lead, IMA HTS Module

    Adviser to the SPARK Program

  • Pallavi Kompella

    Pallavi Kompella

    Res Sci, Animal Pharmacology (Basic Life Sci)

    BioPh.D., Pharmaceutical Sciences, The University of Texas at Austin
    Fulbright U.S. Postdoctoral Scholar, Biomedical Research Institute of Malaga, Spain

  • Eric Kool

    Eric Kool

    George A. and Hilda M. Daubert Professor of Chemistry

    Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
    • Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
    • Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation

  • Jin Billy Li

    Jin Billy Li

    Professor of Genetics

    Current Research and Scholarly InterestsThe Li Lab is primarily interested in RNA editing mediated by ADAR enzymes. We co-discovered that the major function of RNA editing is to label endogenous dsRNAs as "self" to avoid being recognized as "non-self" by MDA5, a host innate immune dsRNA sensor, leading us to pursue therapeutic applications in cancer, autoimmune diseases, and viral infection. The other major direction of the lab is to develop technologies to harness endogenous ADAR enzymes for site-specific transcriptome engineering.

  • Lingyin Li

    Lingyin Li

    Associate Professor of Biochemistry

    BioDr. Li is an associate professor in the Biochemistry Department and ChEM-H Institute at Stanford since 2015. Her lab works on understanding biochemical mechanisms of innate immunity and harnessing it to treat cancer. She majored in chemistry at University of Science and Technology of China and graduated with a B. En in 2003. She then trained with Dr. Laura Kiessling, a pioneer in chemical biology, at University of Wisconsin-Madison and graduated with a Ph.D in chemistry in 2010. She obtained her postdoctoral training with Dr. Timothy Mitchison at Harvard Medical School, who introduced her to the field of chemical immunology.

  • Michael Lin

    Michael Lin

    Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.

  • Kyle Loh

    Kyle Loh

    Assistant Professor of Developmental Biology (Stem Cell)

    BioHow the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human embryonic stem cells develop into over twenty different human cell-types. This roadmap allowed us to generate enriched populations of human liver, bone, heart and blood vessel precursors in a Petri dish from embryonic stem cells. Each of these tissue precursors could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to our interests in developmental and stem cell biology, we also interested in discovering the entry receptors and target cells of deadly biosafety level 4 viruses, together with our collaborators.

    Kyle attended the County College of Morris and Rutgers University, and received his Ph.D. from Stanford University (working with Irving Weissman), with fellowships from the Hertz Foundation, National Science Foundation and Davidson Institute for Talent Development. He then continued as a Siebel Investigator, and later, as an Assistant Professor and The Anthony DiGenova Endowed Faculty Scholar at Stanford, where he is jointly appointed in the Department of Developmental Biology and Institute for Stem Cell Biology & Regenerative Medicine. Kyle is a Packard Fellow, Pew Scholar, Human Frontier Science Program Young Investigator and Baxter Foundation Faculty Scholar, and his research has been recognized by the NIH Director's Early Independence Award, Forbes 30 Under 30, Harold Weintraub Graduate Award, Hertz Foundation Thesis Prize and A*STAR Investigatorship.

  • Jonathan Z. Long

    Jonathan Z. Long

    Associate Professor of Pathology

    BioDr. Jonathan Long is an Associate Professor of Pathology and an Institute Scholar of Stanford ChEM-H (Chemistry, Engineering & Medicine for Human Health). His laboratory studies signaling pathways in mammalian energy metabolism. The long-term goal of this program is to discover new molecules and pathways that can be translated into therapeutic opportunities for obesity, metabolic disease, and other age-associated chronic diseases. Work from the laboratory has been recognized by numerous awards from the Alfred P. Sloan Foundation, the National Institutes of Health, the American Diabetes Association, and the Ono Pharma Foundation. Prior to arriving to Stanford, Dr. Long completed his Ph.D. in Chemistry at Scripps Research and his postdoctoral work at Harvard Medical School.

  • Sharon R. Long

    Sharon R. Long

    William C. Steere, Jr. - Pfizer Inc. Professor of Biological Sciences and Professor, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsBiochemistry, genetics and cell biology of plant-bacterial symbiosis

  • Anson Lowe

    Anson Lowe

    Associate Professor of Medicine (Gastroenterology and Hepatology), Emeritus

    Current Research and Scholarly InterestsThe laboratory is focused on the relationship between injury, wound healing, and cancer. Esophageal, gastric, and pancreatic cancers are a focus. We are particularly interested in the regulation of cell signaling by EGFR, the EGF receptor. In addition to cancer pathogenesis, active projects include the development of new diagnostic assays and drugs.

  • Sydney X. Lu

    Sydney X. Lu

    Assistant Professor of Medicine (Hematology)

    BioSydney Lu is a hematologist and medical oncologist in the Division of Hematology, Department of Medicine, studying novel therapeutics for challenging cancers and immune disorders.
    Sydney's research career started with graduate studies in the laboratory of Dr. Marcel van den Brink at Memorial Sloan Kettering Cancer Center (MSKCC) studying the biology of pathologic donor T cells during graft-versus-host-disease and beneficial T cells mediating graft-versus-tumor effects after allogeneic bone marrow transplant, as well as the role of the thymus in regenerating healthy and protective donor-derived T cells post-transplant.
    The direct relevance of these cellular therapies and their immediate translational applicability to patients inspired him to attend medical school at Stanford and further training in hematology and medical oncology at Memorial Sloan Kettering. There, as a fellow and junior faculty member, he studied disordered RNA splicing in cancer in the laboratory of Dr. Omar Abdel-Wahab, with the goal of developing novel drugs targeting RNA splicing. This work has led to observations that targeted degradation of the RNA binding protein RBM39 may be a feasible therapeutic for the treatment of myeloid cancers bearing RNA splicing factor mutations and that pharmacologic RNA splicing inhibition can generate MHC I-presented peptide neoantigens which are exploitable for immunotherapy in model systems.

    Sydney's laboratory is broadly interested in studying RNA processing and splicing in the contexts of:
    1) normal and pathologic immunity and immunotherapy
    2) cancer biology
    3) normal and malignant hematopoiesis

  • Liqun Luo

    Liqun Luo

    Ann and Bill Swindells Professor and Professor, by courtesy, of Neurobiology

    Current Research and Scholarly InterestsWe study how neurons are organized into specialized circuits to perform specific functions and how these circuits are assembled during development. We have developed molecular-genetic and viral tools, and are combining them with transcriptomic, proteomic, physiological, and behavioral approaches to study these problems. Topics include: 1) assembly of the fly olfactory circuit; 2) assembly of neural circuits in the mouse brain; 3) organization and function of neural circuits; 4) Tool development.

  • Ruben Y. Luo

    Ruben Y. Luo

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsApply top-down mass spectrometry and label-free immunoassay to the study and utilization of biomarker proteoforms in clinical diagnosis.

  • Vinit B. Mahajan, MD, PhD

    Vinit B. Mahajan, MD, PhD

    Professor of Ophthalmology

    Current Research and Scholarly InterestsOur focus is the development of personalized medicine for eye diseases through translation of our discoveries in proteomics, genomics, and phenomics in humans, mice and tissue culture models.

  • Nicole M. Martinez

    Nicole M. Martinez

    Assistant Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly InterestsThe Martinez lab studies RNA regulatory mechanisms that control gene expression. We focus on mRNA processing, RNA modifications and their roles in development and disease.

  • Michaëlle Ntala Mayalu

    Michaëlle Ntala Mayalu

    Assistant Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    BioDr. Michaëlle N. Mayalu is an Assistant Professor of Mechanical Engineering. She received her Ph.D., M.S., and B.S., degrees in Mechanical Engineering at the Massachusetts Institute of Technology. She was a postdoctoral scholar at the California Institute of Technology in the Computing and Mathematical Sciences Department. She was a 2017 California Alliance Postdoctoral Fellowship Program recipient and a 2019 Burroughs Wellcome Fund Postdoctoral Enrichment Program award recipient. She is also a 2023 Hypothesis Fund Grantee.

    Dr. Michaëlle N. Mayalu's area of expertise is in mathematical modeling and control theory of synthetic biological and biomedical systems. She is interested in the development of control theoretic tools for understanding, controlling, and predicting biological function at the molecular, cellular, and organismal levels to optimize therapeutic intervention.

    She is the director of the Mayalu Lab whose research objective is to investigate how to optimize biomedical therapeutic designs using theoretical and computational approaches coupled with experiments. Initial project concepts include: i) theoretical and experimental design of bacterial "microrobots" for preemptive and targeted therapeutic intervention, ii) system-level multi-scale modeling of gut associated skin disorders for virtual evaluation and optimization of therapy, iii) theoretical and experimental design of "microrobotic" swarms of engineered bacteria with sophisticated centralized and decentralized control schemes to explore possible mechanisms of pattern formation. The experimental projects in the Mayalu Lab utilize established techniques borrowed from the field of synthetic biology to develop synthetic genetic circuits in E. coli to make bacterial "microrobots". Ultimately the Mayalu Lab aims to develop accurate and efficient modeling frameworks that incorporate computation, dynamical systems, and control theory that will become more widespread and impactful in the design of electro-mechanical and biological therapeutic machines.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Timothy Meyer

    Timothy Meyer

    Stanford University Professor of Nephrology, Emeritus

    Current Research and Scholarly InterestsInadequate removal of uremic solutes contributes to widespread illness in the more than 500,000 Americans maintained on dialysis. But we know remarkably little about these solutes. Dr. Meyer's research efforts are focused on identifying which uremic solutes are toxic, how these solutes are made, and how their production could be decreased or their removal could be increased. We should be able to improve treatment if we knew more about what we are trying to remove.

  • Paul Salomon Mischel

    Paul Salomon Mischel

    Fortinet Founders Professor and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research bridges cancer genetics, signal transduction and cellular metabolism as we aim to understand the molecular mechanisms that drive cancer development, progression, and drug resistance. We have made a series of discoveries that have identified a central role for ecDNA (extrachromosomal DNA) in cancer development, progression, accelerated tumor evolution and drug resistance.

  • W. E. Moerner

    W. E. Moerner

    Harry S. Mosher Professor

    Current Research and Scholarly InterestsLaser spectroscopy and microscopy of single molecules to probe biological systems, one biomolecule at a time. Primary thrusts: fluorescence microscopy far beyond the optical diffraction limit (PALM/STORM/STED), methods for 3D optical microscopy in cells, and trapping of single biomolecules in solution for extended study. We explore protein localization patterns in bacteria, structures of amyloid aggregates in cells, signaling proteins in the primary cilium, and dynamics of DNA and RNA.

  • Denise M. Monack

    Denise M. Monack

    Martha Meier Weiland Professor in the School of Medicine

    Current Research and Scholarly InterestsThe primary focus of my research is to understand the genetic and molecular mechanisms of intracellular bacterial pathogenesis. We use several model systems to study complex host-pathogen interactions in the gut and in immune cells such as macrophages and dendritic cells. Ultimately we would like to understand how Salmonella persists within certain hosts for years in the face of a robust immune response.

  • David Myung, MD, PhD

    David Myung, MD, PhD

    Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
    Mesenchymal stem cell therapy for corneal and ocular surface regeneration
    Engineered biomolecule therapies for promote corneal wound healing

    Telemedicine in ophthalmology

  • Lauren O'Connell

    Lauren O'Connell

    Assistant Professor of Biology

    Current Research and Scholarly InterestsThe O'Connell lab studies how genetic and environmental factors contribute to biological diversity and adaptation. We are particularly interested in understanding (1) how behavior evolves through changes in brain function and (2) how animal physiology evolves through repurposing existing cellular components.