Sarafan ChEM-H


Showing 31-40 of 139 Results

  • Ron Dror

    Ron Dror

    Cheriton Family Professor and Professor, by courtesy, of Structural Biology and of Molecular & Cellular Physiology

    Current Research and Scholarly InterestsMy lab’s research focuses on computational biology, with an emphasis on 3D molecular structure. We combine two approaches: (1) Bottom-up: given the basic physics governing atomic interactions, use simulations to predict molecular behavior; (2) Top-down: given experimental data, use machine learning to predict molecular structures and properties. We collaborate closely with experimentalists and apply our methods to the discovery of safer, more effective drugs.

  • Justin Du Bois

    Justin Du Bois

    Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology

    BioResearch and Scholarship

    Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.

    The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.

    In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models.

  • Alexander Dunn

    Alexander Dunn

    Associate Professor of Chemical Engineering
    On Partial Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.

  • Alice C. Fan

    Alice C. Fan

    Associate Professor of Medicine (Oncology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsDr. Fan is a physician scientist who studies how turning off oncogenes (cancer genes) can cause tumor regression in preclinical and clinical translational studies. Based on her findings, she has initiated clinical trials studying how targeted therapies affect cancer signals in kidney cancer and low grade lymphoma. In the laboratory, she uses new nanotechnology strategies for tumor diagnosis and treatment to define biomarkers for personalized therapy.

  • Jessica Feldman

    Jessica Feldman

    Associate Professor of Biology
    On Leave from 01/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsWe are interested in understanding design principles within cells that contribute to the diversification of cellular form and function. Using a combination of genetic, biochemical, and live imaging approaches, we are investigating how the microtubule cytoskeleton is spatially organized and the mechanisms underlying organizational changes during development.

  • Dean W. Felsher

    Dean W. Felsher

    Professor of Medicine (Oncology) and of Pathology

    Current Research and Scholarly InterestsMy laboratory studies the molecular basis of cancer with a focus on understanding when cancer can be reversed through targeted oncogene inactivation.

  • Daniel Fernandez

    Daniel Fernandez

    Director of Crystallography

    BioDot-to-dot on an electron density map, the molecular bricks that sustain life - proteins, nucleic acids, polymers, and their ligands, inhibitors, and co-factors - all initially invisible to the naked eye, come alive on-screen. Connecting these molecules to what they do in life inspires research and development. At the Macromolecular Structure Knowledge Center (MSKC) you will find a platform to explore, expand, and enrich our understanding on how natural processes and technology work at the level of the atom.

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • Michael Fischbach

    Michael Fischbach

    Liu (Liao) Family Professor

    Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.

    1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.

    2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:

    Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?

    Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?

    3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing.

  • Polly Fordyce

    Polly Fordyce

    Associate Professor of Bioengineering and of Genetics
    On Leave from 01/01/2014 To 08/31/2024

    Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.