Sarafan ChEM-H
Showing 101-120 of 201 Results
-
Daniel Jarosz
Associate Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.
-
Paul A. Khavari, MD, PhD
Carl J. Herzog Professor of Dermatology in the School of Medicine
Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.
-
Chaitan Khosla
Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.
For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine. -
Peter S. Kim
Virginia and D. K. Ludwig Professor of Biochemistry
Current Research and Scholarly InterestsWe are studying the mechanism of viral membrane fusion and its inhibition by drugs and antibodies. We use the HIV envelope protein (gp120/gp41) as a model system. Some of our studies are aimed at creating an HIV vaccine. We are also characterizing protein surfaces that are referred to as "non-druggable". These surfaces are defined empirically based on failure to identify small, drug-like molecules that bind to them with high affinity and specificity.
-
Karla Kirkegaard
Violetta L. Horton Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.
-
Bruce Koch, Ph.D.
Director, High-Throughput Screening
Current Role at StanfordHead, ChEM-H/CSB High Throughput Screening Knowledge Center (HTSKC)
Staff Co-lead, IMA HTS Module
Adviser to the SPARK Program -
Eric Kool
George A. and Hilda M. Daubert Professor of Chemistry
Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
• Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
• Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation -
Jin Billy Li
Associate Professor of Genetics
Current Research and Scholarly InterestsThe Li Lab is primarily interested in RNA editing mediated by ADAR enzymes. We co-discovered that the major function of RNA editing is to label endogenous dsRNAs as "self" to avoid being recognized as "non-self" by MDA5, a host innate immune dsRNA sensor, leading us to pursue therapeutic applications in cancer, autoimmune diseases, and viral infection. The other major direction of the lab is to develop technologies to harness endogenous ADAR enzymes for site-specific transcriptome engineering.
-
Lingyin Li
Associate Professor of Biochemistry
BioDr. Li is an associate professor in the Biochemistry Department and ChEM-H Institute at Stanford since 2015. Her lab works on understanding biochemical mechanisms of innate immunity and harnessing it to treat cancer. She majored in chemistry at University of Science and Technology of China and graduated with a B. En in 2003. She then trained with Dr. Laura Kiessling, a pioneer in chemical biology, at University of Wisconsin-Madison and graduated with a Ph.D in chemistry in 2010. She obtained her postdoctoral training with Dr. Timothy Mitchison at Harvard Medical School, who introduced her to the field of chemical immunology.
-
Michael Lin
Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsOur lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.
-
Kyle Loh
Assistant Professor of Developmental Biology (Stem Cell)
BioHow the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human embryonic stem cells develop into over twenty different human cell-types. This roadmap allowed us to generate enriched populations of human liver, bone, heart and blood vessel precursors in a Petri dish from embryonic stem cells. Each of these tissue precursors could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to our interests in developmental and stem cell biology, we also interested in discovering the entry receptors and target cells of deadly biosafety level 4 viruses, together with our collaborators.
Kyle attended the County College of Morris and Rutgers University, and received his Ph.D. from Stanford University (working with Irving Weissman), with fellowships from the Hertz Foundation, National Science Foundation and Davidson Institute for Talent Development. He then continued as a Siebel Investigator, and later, as an Assistant Professor and The Anthony DiGenova Endowed Faculty Scholar at Stanford, where he is jointly appointed in the Department of Developmental Biology and Institute for Stem Cell Biology & Regenerative Medicine. Kyle is a Packard Fellow, Pew Scholar, Human Frontier Science Program Young Investigator and Baxter Foundation Faculty Scholar, and his research has been recognized by the NIH Director's Early Independence Award, Forbes 30 Under 30, Harold Weintraub Graduate Award, Hertz Foundation Thesis Prize and A*STAR Investigatorship. -
Jonathan Z. Long
Assistant Professor of Pathology
BioDr. Jonathan Long is an Assistant Professor of Pathology and an Institute Scholar of Stanford ChEM-H (Chemistry, Engineering & Medicine for Human Health). Prior to arriving to Stanford in 2018, Dr. Long completed his Ph.D. in Chemistry at Scripps Research with Benjamin F. Cravatt and his postdoctoral work at Harvard Medical School/Dana-Farber Cancer Institute with Bruce M. Spiegelman. His contributions in the areas of lipid biochemistry and energy homeostasis have been recognized by numerous awards from the National Institutes of Health and the American Diabetes Association. At Stanford, the Long laboratory studies signaling pathways in mammalian energy metabolism. The long-term goal of this work is to discover new molecules and pathways that can be translated into therapeutic opportunities for obesity, metabolic disease, and other age-associated chronic diseases.
-
Sharon R. Long
William C. Steere, Jr. - Pfizer Inc. Professor of Biological Sciences and Professor, by courtesy, of Biochemistry
Current Research and Scholarly InterestsBiochemistry, genetics and cell biology of plant-bacterial symbiosis