Wu Tsai Neurosciences Institute


Showing 1-10 of 10 Results

  • William Talbot

    William Talbot

    Professor of Developmental Biology

    Current Research and Scholarly InterestsWe use genetic and cellular approaches to investigate the molecular basis of glial development and myelination in the zebrafish.

  • Hua Tang

    Hua Tang

    Professor of Genetics and, by courtesy, of Statistics

    Current Research and Scholarly InterestsDevelop statistical and computational methods for population genomics analyses; modeling human evolutionary history; genetic association studies in admixed populations.

  • Vivianne Tawfik

    Vivianne Tawfik

    Assistant Professor of Anesthesiology, Perioperative and Pain Medicine (Adult Pain)

    Current Research and Scholarly InterestsMy overall research interest is to understand how the immune system interacts with the nervous system after injury to promote the transition from acute to chronic pain. In my clinical practice I care for patients with persistent pain that often occurs after minor trauma such as fracture or surgery. Using basic science approaches including whole system immune phenotyping with mass cytometry and genetic manipulation of peripheral and central immune cells, we seek to dissect the temporal and tissue-specific contribution of these cells to either promotion or inhibition of healing.

  • Avnesh Thakor

    Avnesh Thakor

    Assistant Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsOver the past decade there has been tremendous advances in the field of Interventional Oncology with the clinical utilization of multiple new innovative locoregional therapies (i.e. chemoembolization, percutaneous ablation).

    Looking forward, our ability to super-selectively deliver new therapies directly to target organs. These therapies include nanoparticles, stem cells and gene therapy and will open new pathways into the emerging field of Interventional Regenerative Medicine.

  • Suzanne Tharin

    Suzanne Tharin

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsThe long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of “suites” of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.

  • Stuart Thompson

    Stuart Thompson

    Professor of Biology (Hopkins Marine Station)

    Current Research and Scholarly InterestsNeurobiology, signal transduction

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from enzyme engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational analysis.

  • Jeanne L. Tsai

    Jeanne L. Tsai

    Professor of Psychology

    Current Research and Scholarly InterestsMy research examines how culture shapes affective processes (emotions, moods, feelings) and the implications cultural differences in these processes have for what decisions people make, how people think about health and illness, and how people perceive and respond to others in an increasingly multicultural world.

  • Richard Tsien

    Richard Tsien

    George D. Smith Professor, Emeritus

    Current Research and Scholarly InterestsWe study synaptic communication between brain cells with the goal of understanding neuronal computations and memory mechanisms. Main areas of focus include: presynaptic calcium channels, mechanisms of vesicular fusion and recycling. Modulation of synaptic strength through changes in postsynaptic receptors and dendritic morphology. Signaling that links synaptic activity to nuclear transcription and local protein translation. Techniques include imaging, electrophysiology, molecular biology.