Institute for Computational and Mathematical Engineering (ICME)

Showing 11-20 of 71 Results

  • Eric Dunham

    Eric Dunham

    Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • Charbel Farhat

    Charbel Farhat

    Vivian Church Hoff Professor of Aircraft Structures and Professor of Aeronautics and Astronautics

    Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design, analysis, and digital twinning of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on reliable autonomous carrier landing in rough seas; dissipation of vertical landing energies through structural flexibility; nonlinear aeroelasticity of N+3 aircraft with High Aspect Ratio (HAR) wings; pulsation and flutter of a parachute; pendulum motion in main parachute clusters; coupled fluid-structure interaction (FSI) in supersonic inflatable aerodynamic decelerators for Mars landing; flight dynamics of hypersonic systems and their trajectories; and advanced digital twinning. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-component, multi-physics problems; discrete-event-free embedded boundary methods for CFD and FSI; efficient Bayesian optimization using physics-based surrogate models; modeling and quantifying model-form uncertainty; probabilistic, physics-based machine learning; mechanics-informed artificial neural networks for data-driven constitutive modeling; and efficient nonlinear projection-based model order reduction for time-critical applications such as design, active control, and digital twinning.

  • Ron Fedkiw

    Ron Fedkiw

    Canon Professor in the School of Engineering

    BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.

  • Emily Fox

    Emily Fox

    Professor of Statistics and of Computer Science

    BioEmily Fox is a Professor in the Department of Statistics and, by courtesy, Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.

    Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in large-scale Bayesian dynamic modeling, interpretability and computations, with applications in health and computational neuroscience.

  • Oliver Fringer

    Oliver Fringer

    Professor of Civil and Environmental Engineering and of Oceans

    BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.

  • Margot Gerritsen

    Margot Gerritsen

    Professor of Energy Resources Engineering, Emerita

    Current Research and Scholarly InterestsResearch
    My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.

    I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.

    Professional Activities
    Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS

  • Kay Giesecke

    Kay Giesecke

    Professor of Management Science and Engineering

    Current Research and Scholarly InterestsKay is a financial technologist whose research agenda is driven by significant applied problems in areas such as investment management, risk analytics, lending, and regulation, where data streams are increasingly large-scale and dynamical, and where computational demands are critical. He develops and analyzes statistical machine learning methods to make explainable data-driven decisions in these and other areas and efficient numerical algorithms to address the associated computational issues.

  • Peter Glynn

    Peter Glynn

    Thomas W. Ford Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsStochastic modeling; statistics; simulation; finance

  • Ashish Goel

    Ashish Goel

    Professor of Management Science and Engineering and, by courtesy, of Computer Science

    BioAshish Goel is a Professor of Management Science and Engineering and (by courtesy) Computer Science at Stanford University. He received his PhD in Computer Science from Stanford in 1999, and was an Assistant Professor of Computer Science at the University of Southern California from 1999 to 2002. His research interests lie in the design, analysis, and applications of algorithms.

  • Catherine Gorle

    Catherine Gorle

    Associate Professor of Civil and Environmental Engineering
    On Leave from 10/01/2023 To 12/31/2023

    Current Research and Scholarly InterestsGorle's research focuses on the development of predictive flow simulations to support the design of sustainable buildings and cities. Specific topics of interest are the coupling of large- and small-scale models and experiments to quantify uncertainties related to the variability of boundary conditions, the development of uncertainty quantification methods for low-fidelity models using high-fidelity data, and the use of field measurements to validate and improve computational predictions.