School of Engineering


Showing 1-5 of 5 Results

  • Wei Cai

    Wei Cai

    Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioPredicting mechanical strength of materials through theory and simulations of defect microstructures across atomic, mesoscopic and continuum scales. Developing new atomistic simulation methods for long time-scale processes, such as crystal growth and self-assembly. Introducing magnetic field in quantum simulations of electronic structure and transport.

  • Matteo Cargnello

    Matteo Cargnello

    Assistant Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering

    BioMatteo Cargnello is Assistant Professor of Chemical Engineering and Terman Faculty Fellow. His group research interests are in the preparation and use of uniform and tailored materials for heterogeneous catalysis and photocatalysis and the technological exploitation of nanoparticles and nanocrystals. Reactions of interest are related to sustainable energy generation and use, control of emissions of greenhouse gases, and better utilization of abundant building blocks (methane, biomass). Dr. Cargnello received his Ph.D. in Nanotechnology in 2012 at the University of Trieste (Italy) and he was then a post-doctoral scholar in the Chemistry Department at the University of Pennsylvania (Philadelphia) before joining the Faculty at Stanford. He is the recipient of the ENI Award Debut in Research 2013, the European Federation of Catalysis Societies Award as best European Ph.D. thesis in catalysis in 2013, and the Sloan Fellowship in 2018.

  • William Chueh

    William Chueh

    Associate Professor of Materials Science and Engineering and Senior Fellow at the Precourt Institute for Energy

    BioThe availability of low-cost but intermittent renewable electricity (e.g., derived from solar and wind) underscores the grand challenge to store and dispatch energy so that it is available when and where it is needed. Redox-active materials promise the efficient transformation between electrical, chemical, and thermal energy, and are at the heart of carbon-neutral energy cycles. Understanding design rules that govern materials chemistry and architecture holds the key towards rationally optimizing technologies such as batteries, fuel cells, electrolyzers, and novel thermodynamic cycles. Electrochemical and chemical reactions involved in these technologies span diverse length and time scales, ranging from Ångströms to meters and from picoseconds to years. As such, establishing a unified, predictive framework has been a major challenge. The central question unifying our research is: “can we understand and engineer redox reactions at the levels of electrons, ions, molecules, particles and devices using a bottom-up approach?” Our approach integrates novel synthesis, fabrication, characterization, modeling and analytics to understand molecular pathways and interfacial structure, and to bridge fundamentals to energy storage and conversion technologies by establishing new design rules.

  • Bruce Clemens

    Bruce Clemens

    Walter B. Reinhold Professor in the School of Engineering and Professor of Photon Science

    BioClemens studies growth and structure of thin film, interface and nanostructured materials for catalytic, electronic and photovoltaic applications. He and his group investigate phase transitions and kinetics in nanostructured materials, and perform nanoparticle engineering for hydrogen storage and catalysis. Recently he and his collaborators have developed nano-portals for efficient injection of hydrogen into storage media, dual-phase nanoparticles for catalysis, amorphous metal electrodes for semiconductor devices, and a lift-off process for forming free-standing, single-crystal films of compound semiconductors.

  • Yi Cui

    Yi Cui

    Professor of Materials Science and Engineering, of Photon Science, Senior Fellow at the Precourt Institute for Energy and Prof, by courtesy, of Chemistry

    BioCui studies nanoscale phenomena and their applications broadly defined. Research Interests: Nanocrystal and nanowire synthesis and self-assembly, electron transfer and transport in nanomaterials and at the nanointerface, nanoscale electronic and photonic devices, batteries, solar cells, microbial fuel cells, water filters and chemical and biological sensors.