School of Engineering
Showing 151-194 of 194 Results
-
Antony Fraser-Smith
Professor (Research) of Electrical Engineering and of Geophysics, Emeritus
BioFraser-Smith's research focuses on the use of low frequency electromagnetic fields, both as a means of probing (1) the interior of the earth, and (2) the space environment near the earth, as well as for communicating with, and detecting, objects submerged in the sea or buried in the earth, and for detecting changes taking place in the Earth and the near-Earth space environment.
-
David Freyberg
Associate Professor of Civil and Environmental Engineering, Emeritus
Current Research and Scholarly InterestsMy students and I study sediment and water balances in aging reservoirs, collaborative governance of transnational fresh waters, the design of centralized and decentralized wastewater collection, treatment, and reuse systems in urban areas, and hydrologic ecosystem services in urban areas and in systems for which sediment production, transport, and deposition have significant consequences.
-
Oliver Fringer
Professor of Civil and Environmental Engineering and of Oceans
BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.
-
Renate Fruchter
Director of PBL Lab
Current Research and Scholarly InterestsCognitive demands on global learners, VR in teamwork, Sustainability, Wellbeing
-
Ian Fu
Ph.D. Student in Aeronautics and Astronautics, admitted Autumn 2024
Current Research and Scholarly InterestsPlanetary Science, Ocean worlds and Icy Satellites, Space Missions, Autonomy
-
Zipeng Fu
Ph.D. Student in Computer Science, admitted Autumn 2022
BioZipeng Fu is a CS PhD student at Stanford AI Lab, advised by Chelsea Finn. His research focuses on deployable robot systems and learning in the unstructured open world. His representative work includes Mobile ALOHA, Robot Parkour Learning, and RMA, receiving CoRL 2023 & 2022 Best System Finalist awards. His research is supported by Stanford Graduate Fellowship as a Pierre and Christine Lamond Fellow. Previously, he was a student researcher at Google DeepMind. He completed his master's at CMU and bachelor’s at UCLA. Homepage: https://zipengfu.github.io/
-
Hajime Fujita
Ph.D. Student in Bioengineering, admitted Autumn 2022
Masters Student in Bioengineering, admitted Spring 2024Current Research and Scholarly InterestsBiosensors
-
Gerald Fuller
Fletcher Jones Professor in the School of Engineering
BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).
The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.
There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films. -
Sydney Fultz-Waters
Ph.D. Student in Materials Science and Engineering, admitted Summer 2024
Masters Student in Materials Science and Engineering, admitted Autumn 2023BioSydney is a Ph.D student in the Materials Science and Engineering department at Stanford University, co-advised by Prof. Shan X. Wang and Prof. Eric Pop. She received her B.S. in Materials Engineering from California Polytechnic State University, San Luis Obispo in 2023. Her research focuses on low dimensional magnetic materials for electronic applications.