School of Engineering
Showing 1-7 of 7 Results
-
Nick McKeown
Kleiner Perkins, Mayfield, Sequoia Capital Professor in the School of Engineering and Professor of Computer Science, Emeritus
BioMcKeown researches techniques to improve the Internet. Most of this work has focused on the architecture, design, analysis, and implementation of high-performance Internet switches and routers. More recently, his interests have broadened to include network architecture, backbone network design, congestion control; and how the Internet might be redesigned if we were to start with a clean slate.
-
Teresa Meng
Reid Weaver Dennis Professor in Electrical Engineering and Professor of Computer Science, Emerita
BioTeresa H. Meng is the Reid Weaver Dennis Professor of Electrical Engineering, Emerita, at Stanford University. Her research activities in the first 10 years focused on low-power circuit and system design, video signal processing, and wireless communications. In 1998, Prof. Meng took leave from Stanford and founded Atheros Communications, Inc., which developed semiconductor system solutions for wireless network communications products. After returning to Stanford in 2000 to continue her teaching and research, Prof. Meng turned her research interest to applying signal processing and IC design to bio-medical engineering. She collaborated with Prof. Krishna Shenoy on neural signal processing and neural prosthetic systems. She also directed a research group exploring wireless power transfer and implantable bio-medical devices. Prof. Meng retired from Stanford in 2013.
-
David Miller
W.M. Keck Foundation Professor of Electrical Engineering, Emeritus
Current Research and Scholarly InterestsDavid Miller’s research interests include the use of optics in switching, interconnection, communications, computing, and sensing systems, physics and applications of quantum well optics and optoelectronics, and fundamental features and limits for optics and nanophotonics in communications and information processing.
-
John Mitchell
Mary and Gordon Crary Family Professor in the School of Engineering, and Professor, by courtesy, of Electrical Engineering and of Education
Current Research and Scholarly InterestsProgramming languages, computer security and privacy, blockchain, machine learning, and technology for education
-
Subhasish Mitra
William E. Ayer Professor of Electrical Engineering and Professor of Computer Science
BioSubhasish Mitra holds the William E. Ayer Endowed Chair Professorship in the Departments of Electrical Engineering and Computer Science at Stanford University. He directs the Stanford Robust Systems Group, serves on the leadership team of the Microelectronics Commons AI Hardware Hub funded by the US CHIPS and Science Act, leads the Computation Focus Area of the Stanford SystemX Alliance, and is the Associate Chair (Faculty Affairs) of Computer Science. His research ranges across Robust Computing, NanoSystems, Electronic Design Automation (EDA), and Neurosciences. Results from his research group have influenced almost every contemporary electronic system and have inspired significant government and research initiatives in multiple countries. He has held several international academic appointments — the Carnot Chair of Excellence in NanoSystems at CEA-LETI in France, Invited Professor at EPFL in Switzerland, and Visiting Professor at the University of Tokyo in Japan. Prof. Mitra also has consulted for major technology companies including AMD (XIlinx), Cisco, Google, Intel, Merck (EMD Electronics), and Samsung.
In the field of Robust Computing, he has created many key approaches for circuit failure prediction, on-line diagnostics, QED system validation, soft error resilience, and X-Compact test compression. Their adoption by industry is growing rapidly, in markets ranging from cloud computing to automotive systems, under various names (System Lifecycle Management, Predictive Health Monitoring, In-System Test Architecture, In-field Scan). His X-Compact approach has proven essential to cost-effective manufacturing and high-quality testing of almost all 21st century systems. X-Compact and its derivatives enabled billions of dollars of cost savings across the industry.
In the field of NanoSystems, with his students and collaborators, he demonstrated several firsts: the first NanoSystems hardware among all beyond-silicon nanotechnologies for energy-efficient computing (the carbon nanotube computer), the first 3D NanoSystem with computation immersed in data storage, the first published end-to-end computing systems using resistive memories (Resistive RAM-based non-volatile computing systems delivering 10-fold energy efficiency versus embedded flash), and the first monolithic 3D integration combining heterogeneous logic and memory technologies in a silicon foundry. These received wide recognition: cover of NATURE, several Highlights to the US Congress, and highlight as "important scientific breakthrough" by news organizations worldwide.
Prof. Mitra's honors include the Harry H. Goode Memorial Award (by IEEE Computer Society for outstanding contributions in the information processing field), Newton Technical Impact Award in EDA (test-of-time honor by ACM SIGDA and IEEE CEDA), the University Researcher Award (by Semiconductor Industry Association and Semiconductor Research Corporation to recognize lifetime research contributions), the EDAA Achievement Award (by European Design and Automation Association, given to individuals who made outstanding contributions to electronic design, automation and testing in their life), the Intel Achievement Award (Intel’s highest honor), and the Distinguished Alumnus Award from the Indian Institute of Technology, Kharagpur. He and his students have published over 15 award-winning papers across 5 topic areas (technology, circuits, EDA, test, verification) at major venues including the Design Automation Conference, International Electron Devices Meeting, International Solid-State Circuits Conference, International Test Conference, Symposia on VLSI Technology/VLSI Circuits, and Formal Methods in Computer-Aided Design. Stanford undergraduates have honored him several times "for being important to them." He is a Fellow of the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE), and a Foreign Member of Academia Europaea.