School of Engineering
Showing 1-100 of 470 Results
-
Ade Mabogunje
Sr Research Engineer
BioAde Mabogunje conducts research on the design thinking process with a view to instrumenting and measuring the process and giving feedback to design thinking teams on ways to improve their performance. He works in collaboration with partners in the engineering education, design practice and investment community as a participant-observer in the practice of building and developing ecosystems that support accelerated and continuous innovation in products and services. Prior to this he was the associate director of the Stanford Center for Design Research (CDR). He was also the lead of the Real-time Venture Design Lab program (ReVeL) in the school of Humanities and Sciences. His industry experience includes engineering positions at the French Oil Company Elf (now Total) and research collaboration with Artificial Intelligence Scientists at NASA Ames. He has publications in the areas of design theory and methodology, knowledge management, emotions in engineering, design protocol analysis, and engineering-design education.
-
David Madey
Masters Student in Engineering, admitted Autumn 2023
BioDavid Madey is a current Masters Student in the School of Engineering's interdisciplinary design program at Stanford University. He holds a B.S. in Mechanical Engineering from the University of California, Davis. He previously worked as a mechanical design engineer at Silicon Valley Mechanical and as an R&D biomedical engineer at Applied Medical. His graduate work focuses on emerging AI technologies and digital user experiences, emphasizing accessibility as a foundational pillar in technology and business.
-
Danielle Mai
Assistant Professor of Chemical Engineering
BioDanielle J. Mai joined the Department of Chemical Engineering at Stanford in January 2020. She earned her B.S.E. in Chemical Engineering from the University of Michigan and her M.S. and Ph.D. in Chemical Engineering from the University of Illinois at Urbana-Champaign under the guidance of Prof. Charles M. Schroeder. Dr. Mai was an Arnold O. Beckman Postdoctoral Fellow in Prof. Bradley D. Olsen's group at MIT, where she engineered materials with selective biomolecular transport properties, elucidated mechanisms of toughness and extensibility in entangled associative hydrogels, and developed high-throughput methods for the discovery of polypeptide materials. The Mai Lab engineers biopolymers, which are the building blocks of life. Specifically, the group integrates precise biopolymer engineering with multi-scale experimental characterization to advance biomaterials development and to enhance fundamental understanding of soft matter physics. Dr. Mai's work has been recognized through the AIChE 35 Under 35 Award (2020), APS DPOLY/UKPPG Lecture Exchange (2021), Air Force Office of Scientific Research Young Investigator Program Award (2022), ACS PMSE Arthur K. Doolittle Award (2023), and MIT Technology Review List of 35 Innovators Under 35 (2023).
-
Jennifer Maier
Postdoctoral Scholar, Mechanical Engineering
BioMy research interests include a broad variety of topics, ranging from medical image analysis and signal processing, machine learning and artificial intelligence, which I mainly focused on during my Ph.D. research. As a member of the Digital Athlete project of the Wu Tsai Performance Allience, I am now pursuing research to investigate how we can use wearable sensors, machine learning and biomechanical simulations to improve athlete performance, prevent injuries and support rehabilitation after injury.
I completed my Bachelor of Science and Master of Science degrees in medical engineering from Friedrich-Alexander-University Erlangen-Nuernberg (FAU). In 2015, I worked on my master’s thesis under the supervision of Prof. Kamiar Aminian during a research stay in the Laboratory of Movement Analysis and Measurement (LMAM), École Polytechnique Fédérale de Lausanne (EPFL), supported by a DAAD Scholarship. Afterwards, I pursued my Ph.D. at FAU in the Pattern Recognition Laboratory under the supervision of Prof. Andreas Maier and in the Machine Learning and Data Analytics Lab under the supervision of Prof. Bjoern Eskofier. I worked on projects in collaboration with Stanford University and the Universidade do Vale do Rio dos Sinos (UNISINOS) and conducted several short-term research stays at the partner universities. After finishing my Ph.D. in 2021, I joined Stanford University as a postdoctoral scholar advised by Prof. Ellen Kuhl. -
Dr. Arun Majumdar
Dean, Stanford Doerr School of Sustainability, Jay Precourt Professor, Professor of Mechanical Engineering, of Energy Science & Engineering, of Photon Science, by courtesy, of Materials Sci & Eng and Senior Fellow, by courtesy, at Hoover
BioDr. Arun Majumdar is the inaugural Dean of the Stanford Doerr School of Sustainability. He is the Jay Precourt Provostial Chair Professor at Stanford University, a faculty member of the Departments of Mechanical Engineering and Energy Science and Engineering, a Senior Fellow and former Director of the Precourt Institute for Energy and Senior Fellow (courtesy) of the Hoover Institution. He is also a faculty in Department of Photon Science at SLAC.
In October 2009, Dr. Majumdar was nominated by President Obama and confirmed by the Senate to become the Founding Director of the Advanced Research Projects Agency - Energy (ARPA-E), where he served until June 2012 and helped ARPA-E become a model of excellence and innovation for the government with bipartisan support from Congress and other stakeholders. Between March 2011 and June 2012, he also served as the Acting Under Secretary of Energy, enabling the portfolio of Office of Energy Efficiency and Renewable Energy, Office of Electricity Delivery and Reliability, Office of Nuclear Energy and the Office of Fossil Energy, as well as multiple cross-cutting efforts such as Sunshot, Grid Modernization Team and others that he had initiated. Furthermore, he was a Senior Advisor to the Secretary of Energy, Dr. Steven Chu, on a variety of matters related to management, personnel, budget, and policy. In 2010, he served on Secretary Chu's Science Team to help stop the leak of the Deep Water Horizon (BP) oil spill.
Dr. Majumdar serves as the Chair of the Advisory Board of the US Secretary of Energy, Jennifer Granholm. He led the Agency Review Team for the Department of Energy, Federal Energy Regulatory Commission and the Nuclear Regulatory Commission during the Biden-Harris Presidential transition. He served as the Vice Chairman of the Advisory Board of US Secretary of Energy, Dr. Ernest Moniz, and was also a Science Envoy for the US Department of State with focus on energy and technology innovation in the Baltics and Poland. He also serves on numerous advisory boards and boards of businesses, investment groups and non-profit organizations.
After leaving Washington, DC and before joining Stanford, Dr. Majumdar was the Vice President for Energy at Google, where he assembled a team to create technologies and businesses at the intersection of data, computing and electricity grid.
Dr. Majumdar is a member of the US National Academy of Sciences, US National Academy of Engineering and the American Academy of Arts and Sciences. His research in the past has involved the science and engineering of nanoscale materials and devices, especially in the areas of energy conversion, transport and storage as well as biomolecular analysis. His current research focuses on redox reactions and systems that are fundamental to a sustainable energy future, multidimensional nanoscale imaging and microscopy, and an effort to leverage modern AI techniques to develop and deliver energy and climate solutions.
Prior to joining the Department of Energy, Dr. Majumdar was the Almy & Agnes Maynard Chair Professor of Mechanical Engineering and Materials Science & Engineering at University of California–Berkeley and the Associate Laboratory Director for energy and environment at Lawrence Berkeley National Laboratory. He also spent the early part of his academic career at Arizona State University and University of California, Santa Barbara.
Dr. Majumdar received his bachelor's degree in Mechanical Engineering at the Indian Institute of Technology, Bombay in 1985 and his Ph.D. from the University of California, Berkeley in 1989. -
Joshua Makower
Yock Family Professor and Professor of Bioengineering
Current Research and Scholarly InterestsDr. Josh Makower is the Boston Scientific Applied Bioengineering Professor of Medicine and of Bioengineering at the Stanford University Schools of Medicine and Engineering and the Director of the Stanford Byers Center for Biodesign, the program he co-founded with Dr. Paul Yock twenty years ago. Josh helped create the fundamental structure of the Center’s core curriculum and is the chief architect of what is now called “The Biodesign Process.” Over the past 20 years since Josh and Paul founded Biodesign, this curriculum and the associated textbook has been used at Stanford and across the world to train hundreds of thousands of students, faculty and industry leaders on the Biodesign process towards the advancement of medical innovation for the improvement of patient care. Josh has practiced these same techniques directly as the Founder & Executive Chairman of ExploraMed, a medical device incubator, creating 9 companies since 1995. Transactions from the ExploraMed portfolio include NeoTract, acquired by Teleflex, Acclarent, acquired by J&J, EndoMatrix, acquired by C.R. Bard & TransVascular, acquired by Medtronic. Other ExploraMed/NEA ventures include Moximed, NC8 and Willow. Josh is also a Special Partner at NEA where he supports the healthcare team and medtech/healthtech investing practice. Josh serves on the boards of Allay Therapeutics, Revelle Aesthetics, Setpoint Medical, DOTS Technologies, Eargo, ExploraMed, Intrinsic Therapeutics, Moximed, Willow and Coravin. Josh holds over 300 patents and patent applications. He received an MBA from Columbia University, an MD from the NYU School of Medicine, a bachelor’s degree in Mechanical Engineering from MIT. Josh is a Member of the National Academy of Engineering and the College of Fellows of The American Institute for Medical and Biological Engineering and was awarded the Coulter Award for Healthcare Innovation by the Biomedical Engineering Society in 2018.
-
Mohamadali Malakoutian
Postdoctoral Scholar, Electrical Engineering
BioMohamadali is an experienced Postdoctoral researcher at Stanford University with a demonstrated history of working in high-power high-frequency transistors, all-diamond diodes, and diamond integration for thermal management, III-V wide bandgap semiconductors, integrated microsystems including MEMS/NEMS devices, and microfluidic channels. He is an expert in fab process design-integration, process and device modeling (Athena, Atlas), thin-film deposition techniques (Evaporation, Sputtering, PVD, ALD, and PECVD), dry etching (ICP/RIE etching of Diamond, AlN, SiN, Al2O3, SiO2), wet etching (bulk Si micromachining), and single-crystalline/polycrystalline diamond growth. He is currently working on the growth, fabrication, and characteristics of GaN HEMTs with diamond integrated for thermal management to solve the self-heating problem of mm-wave devices.
-
Ali Mani
Associate Professor of Mechanical Engineering
BioAli Mani is an associate professor of Mechanical Engineering at Stanford University. He is a faculty affiliate of the Institute for Computational and Mathematical Engineering at Stanford. He received his PhD in Mechanical Engineering from Stanford in 2009. Prior to joining the faculty in 2011, he was an engineering research associate at Stanford and a senior postdoctoral associate at Massachusetts Institute of Technology in the Department of Chemical Engineering. His research group builds and utilizes large-scale high-fidelity numerical simulations, as well as methods of applied mathematics, to develop quantitative understanding of transport processes that involve strong coupling with fluid flow and commonly involve turbulence or chaos. His teaching includes the undergraduate engineering math classes and graduate courses on fluid mechanics and numerical analysis.
-
Christopher Manning
Thomas M. Siebel Professor of Machine Learning, Professor of Linguistics and of Computer Science
BioChristopher Manning is a professor of computer science and linguistics at Stanford University, director of the Stanford Artificial Intelligence Laboratory (SAIL), and an associate director of the Stanford Institute for Human-Centered Artificial Intelligence (HAI). He works on software that can intelligently process, understand, and generate human language material. He is a leader in applying Deep Learning to Natural Language Processing, including exploring Tree Recursive Neural Networks, neural network dependency parsing, the GloVe model of word vectors, neural machine translation, question answering, and deep language understanding. He also focuses on computational linguistic approaches to parsing, natural language inference and multilingual language processing, including being a principal developer of Stanford Dependencies and Universal Dependencies. Manning is an ACM Fellow, a AAAI Fellow, an ACL Fellow, and a Past President of ACL. He has coauthored leading textbooks on statistical natural language processing and information retrieval. He is the founder of the Stanford NLP group (@stanfordnlp) and manages development of the Stanford CoreNLP and Stanza software.
-
Andrew J. Mannix
Assistant Professor of Materials Science and Engineering
Current Research and Scholarly InterestsAtomically thin 2D materials incorporated into van der Waals heterostructures are a promising platform to deterministically engineer quantum materials with atomically resolved thickness and abrupt interfaces across macroscopic length scales while retaining excellent material properties. Because 2D materials exhibit a wide range of electronic characteristics with properties that often rival conventional electronic materials — e.g., metals, semiconductors, insulators, and superconductors — it is possible to combine them in virtually infinite variety to achieve diverse heterostructures. Furthermore, the van der Waals interface enables interlayer twist engineering to modify the interlayer symmetry, periodic potential (moiré superlattice), and hybridization, which has resulted in novel quantum states of matter. Many of these heterostructures, especially those involving specific interlayer twist angles, would be otherwise infeasible through direct growth.
The Mannix Group is developing a unique set of in-house capabilities to systematically elucidate the fundamental structure-property relationships underpinning the growth of 2D materials and their inclusion into van der Waals heterostructures. Greater understanding will allow us to provide a platform for engineering the properties of matter at the atomic scale and offer guidance for emerging applications in novel electronics and in quantum information science.
To accomplish this, we employ: precise growth techniques such as chemical vapor deposition and molecular beam epitaxy; automated van der Waals assembly; and atomically-resolved microscopy including cryo-STM/AFM.