School of Engineering
Showing 801-850 of 7,073 Results
-
Lynette Cegelski
Professor of Chemistry and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsOur research program is inspired by the challenge and importance of elucidating chemical structure and function in complex biological systems and the need for new strategies to treat infectious diseases. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We have introduced uniquely enabling problem-solving approaches integrating solid-state NMR spectroscopy with microscopy and biochemical and biophysical tools to determine atomic- and molecular-level detail in complex macromolecular assemblies and whole cells and biofilms. We are uncovering new chemistry and new chemical structures produced in nature. We identify small molecules that influence bacterial assembly processes and use these in chemical genetics approaches to learn about bacterial cell wall, amyloid and biofilm assembly.
Translationally, we have launched a collaborative antibacterial drug design program integrating synthesis, chemical biology, and mechanistic biochemistry and biophysics directed at the discovery and development of new antibacterial therapeutics targeting difficult-to-treat bacteria. -
Anthony Cesnik
Basic Life Research Scientist
BioI am focused on advancing our understanding of biology at the proteoform level, peering into the cellular machinery in a way that reveals precisely which molecular forms of proteins are acting in biological processes and systems. Recently, I have been working in Emma Lundberg’s lab on understanding how the expression of these molecules varies between individual cells in space and time. Emma Lundberg’s group has a wealth of experience in using microscopy to yield biological images that paint a picture of this cell-to-cell heterogeneity of protein expression information, and joining her lab has deepened my expertise in integrating datasets to perform innovative analyses of single-cell protein expression. I hope to extend this towards analyzing single-cell proteoform expression, understanding the heterogeneity and flux between these proteoforms in space and time, and digging into the fundamental insights about human biology these data may reveal.
-
Rahul Chajwa
Postdoctoral Scholar, Bioengineering
Current Research and Scholarly InterestsMy HFSP project is focussed on understanding the birth, life and death of marine snow. A predictive understanding of the hydrodynamic, biotic, and non-equilibrium aspects of this sinking microbial ecosystem is a notoriously challenging and globally relevant problem and is the central theme of my research at Stanford University. I’m applying my training as a physicist to shed light on the dynamical aspects of microbial life in the ocean, and to contribute insights that can help mitigate the negative impact of human activities on global climate; something I feel strongly about.