School of Engineering
Showing 6,501-6,520 of 6,938 Results
-
熊剑 (Jian Xiong)
Postdoctoral Scholar, Chemical Engineering
BioI thrive to understand the roles of lysosomes in physiological and pathological conditions. Lysosomes are both degradation compartment and metabolic controlling hub, and dysregulation of lysosomal functions are frequently implicated in a vast number of diseases including neurodegenerative diseases, however, the systematic knowledge of the molecular mechanism by which lysosomal contributes to these diseases is lacking. Ion channels are the primary mediators of neuronal activity, defects in neuronal ion channel activity are linked with many kinds of neurodegenerative diseases. Interestingly, besides typical ion channels that are involved in the neuronal activity, defects in lysosomal ion channels, such as TRPML1, CLN7 and CLC-7 are also implicated in neuropathy. My previous work as Ph.D student in University of Texas MD Anderson Cancer Center focused on regulation of lysosomal function by ion channels and metabolites. I discovered a mechanism of lysosomal Na+ channel regulate mTORC1 activation by regulating lysosomal amino acid accumulation. I also discovered role of glutamine in controlling lysosomal degradation capacity. In the meantime, I developed novel methods to isolate organelles. My ultimate research goal is to understand the key developmental pathways and how alterations in gene sequences and expression contribute to human disease, therefore, I am pursuing independent academic researcher as my career goal. Starting Feb 2022, I work with Dr. Monther Abu-Remaileh at Stanford University on role of lysosomes in neurodegenerative diseases. I use genetics, chemical biology and omics approaches to study lysosome function under various physiological and pathological conditions, especially age-associated neurodegenerative disorders, and monogenic neurodegenerative lysosome storage diseases. In Stanford, I aim to integrate ionic regulation, metabolomic regulation and functional proteomic regulation to systematically understand the biology of lysosome in physiological conditions and pathological conditions.
-
Kuang Xu
Associate Professor of Operations, Information and Technology at the Graduate School of Business and, by courtesy, of Electrical Engineering
On Leave from 10/07/2024 To 09/19/2025BioKuang Xu is an Associate Professor of Operations, Information and Technology at Stanford Graduate School of Business, and Associate Professor by courtesy with the Electrical Engineering Department, Stanford University. Born in Suzhou, China, he received the B.S. degree in Electrical Engineering (2009) from the University of Illinois at Urbana-Champaign, and the Ph.D. degree in Electrical Engineering and Computer Science (2014) from the Massachusetts Institute of Technology.
His research primarily focuses on understanding fundamental properties and design principles of large-scale stochastic systems using tools from probability theory and optimization, with applications in queueing networks, healthcare, privacy and machine learning. He received First Place in the INFORMS George E. Nicholson Student Paper Competition (2011), the Best Paper Award, as well as the Kenneth C. Sevcik Outstanding Student Paper Award at ACM SIGMETRICS (2013), and the ACM SIGMETRICS Rising Star Research Award (2020). He currently serves as an Associate Editor for Operations Research and Management Science. -
Kun Xu
Postdoctoral Scholar, Mechanical Engineering
Current Research and Scholarly InterestsMaterials characterization by using advanced electron microscopy