School of Humanities and Sciences
Showing 101-143 of 143 Results
-
Ben Church
Ph.D. Student in Mathematics, admitted Autumn 2021
Current Research and Scholarly InterestsI am interested in birational geometry in all characteristics.
-
Sarah Church
Vice Provost for Undergraduate Education, Freeman-Thornton Chair for the Vice Provost for Undergraduate Education and Professor of Physics
Current Research and Scholarly InterestsExperimental & Observational Astrophysics and Cosmology
-
Griffin Chure
Postdoctoral Scholar, Biology
BioThe short version is that I’m a antidisciplinary scientist. The medium-length version is that I’m a quantitatively minded person who uses theoretical physics and computational analysis to design biochemical experiments that address questions in environmental science and ecology. The slightly longer version is that I’m an NSF postdoctoral fellow at Stanford sitting in the lab of Jonas Cremer where I use principles of bacterial physiology to make predictive models of evolution. I firmly believe that the future of biology relies on an intuition for the physics that governs it, especially in evolutionary biology.
Being the progeny of two paleontologists, I grew up in rural Utah where I was raised in a concoction of contradictions. While my weekends were spent with my parents helping dig up dinosaur bones and grappling with geology of my surroundings, my weekdays were spent in the rural public education system where I was taught evolution was a lie, humans can’t impact the Earth, and that dinosaur bones were buried by either the devil or the government (or maybe both). Contending with these diametrically opposed views of science and experiencing its influence on public discourse has strongly influenced the way I want to understand the world; through the cold, unforgiving, and objective lens of math.
After studying biology and chemistry at the University of Utah, I earned a PhD in Biochemistry and Molecular Biophysics under the tutelage of Rob Phillips at the California Institute of Technology. Through studying how bacterial cells control the action of their own genes, I learned how to approach biological problems from a physical and probabilistic perspective. I have carried this manner of scientific study with me where I bring it to bear on the complex phenomena that emerge at the intersection of bacterial physiology, ecology, and evolution.
Beyond quantitative science, I am an amateur web developer and help build and maintain a number of scientific resources, such as the Human Impacts Database. Beyond science, I love taking photographs, making programmatically generated art, vector based illustration (like those on my research page), and exploring the wild lands of California. I also watch my fair share of films and television about which I have hard-headed opinions, such as an affinity for Alejandro Jodorowsky and Julia Ducournau and a disdain for Star Wars and Marvel. -
Nicole Cobb
Grants Assistant & Administration Associate, Statistics
BioNicole Cobb is the Grants Assistant & Administration Associate with the Statistics Department in the School of Humanities & Sciences.
-
James Collman
George A. and Hilda M. Daubert Professor of Chemistry, Emeritus
BioProfessor Emeritus James Collman has made landmark contributions to inorganic chemistry, metal ion biochemistry, homogeneous catalysis, and transition metal organometallic chemistry. He pioneered numerous now-popular research tools to reveal key structural and functional details of metalloenzymes essential to respiration and energy, and hemoglobin and myoglobin, essential to oxygen transport in the blood.
Born 1932 in Beatrice, Nebraska, James P. Collman studied chemistry at U. Nebraska–Lincoln (B.S. 1954, M.S. 1956). His doctoral work at U. Illinois at Urbana-Champaign (Ph.D., 1958) focused on Grignard reagents. As a faculty member at U. North Carolina, he demonstrated aromatic reactivity in metal acetylacetonates, and he developed metal complexes that hydrolyze peptide bonds under physiological conditions. He came to Stanford University as Professor of Chemistry in 1967. Among many honors, Prof. Collman’s was elected to the National academy of Sciences in 1975, and named California Scientist of the Year in 1983.
At Stanford, Prof. Collman invented a new paradigm for studying biological systems using functional synthetic analogs of metal-containing enzyme systems, free from the protein coatings that can affect metalloprotein chemical properties. This strategy allowed him to elucidate the intrinsic reactivity of the metal center as well as the effects of protein-metal interactions on biological function.
One focal point of this research has involved heme-proteins such as the oxygen (O2) carrier hemoglobin (Hb), and the O2-storing protein myoglobin (Mb). Prof. Collman was the first to prepare and characterize stable, functional analogues of the Hb and Mb active sites, which contain an iron derivative of the large flat “porphyrin” ligand. In his “picket fence” porphyrin, groups installed on the periphery block side reactions, which would otherwise degrade the structure. This protected iron complex manifests the unique magnetic, spectroscopic and structural characteristics of the O2-binding Hb and Mb sites, and exhibits very similar O2-binding affinities.
The Collman Group also prepared functional mimics of the O2-binding/reducing site in a key respiration enzyme, cytochrome c oxidase, CcO, which converts O2 to H2O during biosynthesis of the energy storage molecule ATP. This enzyme must be very selective: partial O2 reduction products are toxic. Prof. Collman invented a powerful synthetic strategy to create analogs of the CcO active site and applied novel electrochemical techniques to demonstrate that these models catalyze the reduction of O2 to water without producing toxic partially-reduced species. He was able to mimic slow, rate-limiting electron delivery by attaching his CcO model to a liquid-crystalline membrane using “click chemistry.” He demonstrated that hydrogen sulfide molecules and heterocycles reversibly bind to the metal centers at CcO’s active site, connecting a synthetic enzyme model to simple molecules that reversibly inhibit respiration. These respiration inhibitors exhibit physiological properties, affecting blood clotting and controlling the effects of the hormone, nitric oxide, NO.
In addition, Prof. Collman performed fundamental studies of organometallic reactions. He also prepared and characterized homodinuclear and heterodinuclear complexes having metal-metal multiple bonds, and made the first measurements of the rotational barriers found in multiple metal-metal bonds.
Prof. Collman’s impactful textbook “Principles and Applications of Organotransition Metal Chemistry” has seen multiple editions. His book “Naturally Dangerous: Surprising Facts About Food, Health, and the Environment” explains the science behind everyday life, and received favorable reviews in Nature and The Washington Post. -
Lauren Cote
Postdoctoral Scholar, Biology
BioI'm a developmental biologist with a background in planarian regeneration who is studying epithelial cells in Jessica Feldman's lab as a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation. I'm interested in understanding better how different kinds of epithelial cells, like the cells that line your gut and the cells that make up your skin, are able to correctly connect to one another and form fully continuous organs.
-
Jonas Cremer
Assistant Professor of Biology
Current Research and Scholarly InterestsWe are a highly interdisciplinary research team, joined in our desire to better understand microbial life. To elucidate how bacterial cells accumulate biomass and grow, we work with the model organism Escherichia coli. We further focus on gut bacteria and their interactions with the human host. Our approaches combine quantitative experimentation and mathematical modeling.
-
Larry Crowder
Edward Ricketts Provostial Professor, Professor of Oceans, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology
Current Research and Scholarly InterestsEcology, conservation, fisheries, protected species, ecosystem-based management
-
Bianxiao Cui
Job and Gertrud Tamaki Professor of Chemistry
Current Research and Scholarly InterestsOur objective is to develop new biophysical methods to advance current understandings of cellular machinery in the complicated environment of living cells. Currently, we are focusing on four research areas: (1) Membrane curvature at the nano-bio interface; (2) Nanoelectrode arrays (NEAs) for scalable intracellular electrophysiology; (3) Electrochromic optical recording (ECORE) for neuroscience; and (4) Optical control of neurotrophin receptor tyrosine kinases.
-
Yi Cui
Director, Precourt Institute for Energy, Fortinet Founders Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, Senior Fellow at Woods and Professor, by courtesy, of Chemistry
BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.
-
Martha S. Cyert
Dr. Nancy Chang Professor
Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.