School of Humanities and Sciences
Showing 101-150 of 382 Results
-
David Goldhaber-Gordon
Professor of Physics and, by courtesy, of Applied Physics
Current Research and Scholarly InterestsHow do electrons organize themselves on the nanoscale?
We know that electrons are charged particles, and hence repel each other; yet in common metals like copper billions of electrons have plenty of room to maneuver and seem to move independently, taking no notice of each other. Professor Goldhaber-Gordon studies how electrons behave when they are instead confined to tiny structures, such as wires only tens of atoms wide. When constrained this way, electrons cannot easily avoid each other, and interactions strongly affect their organization and flow. The Goldhaber-Gordon group uses advanced fabrication techniques to confine electrons to semiconductor nanostructures, to extend our understanding of quantum mechanics to interacting particles, and to provide the basic science that will shape possible designs for future transistors and energy conversion technologies. The Goldhaber-Gordon group makes measurements using cryogenics, precision electrical measurements, and novel scanning probe techniques that allow direct spatial mapping of electron organization and flow. For some of their measurements of exotic quantum states, they cool electrons to a fiftieth of a degree above absolute zero, the world record for electrons in semiconductor nanostructures. -
Peter Graham
Professor of Physics
On Leave from 10/01/2024 To 12/31/2024Current Research and Scholarly InterestsWhat physics lies beyond the Standard Model and how can we discover it?
Professor Graham is broadly interested in theoretical physics beyond the Standard Model which often involves cosmology, astrophysics, general relativity, and even atomic physics. The Standard Model leaves many questions unanswered including the nature of dark matter and the origins of the weak scale, the cosmological constant, and the fundamental fermion masses. These clues are a guide to building new theories beyond the Standard Model. He recently proposed a new solution to the hierarchy problem which uses dynamical relaxation in the early universe instead of new physics at the weak scale.
Professor Graham is also interested in inventing novel experiments to discover such new physics, frequently using techniques from astrophysics, condensed matter, and atomic physics. He is a proposer and co-PI of the Cosmic Axion Spin Precession Experiment (CASPEr) and the DM Radio experiment. CASPEr uses nuclear magnetic resonance techniques to search for axion dark matter. DM Radio uses high precision magnetometry and electromagnetic resonators to search for hidden photon and axion dark matter. He has also proposed techniques for gravitational wave detection using atom interferometry.
Current areas of focus:
Theory beyond the Standard Model
Dark matter models and detection
Novel experimental proposals for discovering new physics such as axions and gravitational waves
Understanding results from experiments ranging from the LHC to early universe cosmology -
Giorgio Gratta
Ray Lyman Wilbur Professor
BioGiorgio Gratta is a Professor of Physics at Stanford university and the current Physics department chair. Gratta is an experimentalist, with research interests in the broad area of the physics of fundamental particles and their interactions. While his career started with experiments at particle colliders, since at Stanford Gratta has tackled the study of neutrinos and gravity at the shortest distances.
With two landmark experiments using neutrinos produced by nuclear reactors, Gratta and collaborators investigated the phenomenon of neutrino flavor mixing, in one case reporting the first evidence for neutrino oscillations using artificial neutrinos. This established the finite nature of neutrino masses. The same experiment was also first to detect neutrinos from the interior of our planet, providing a new tool for the Earth sciences.
As a natural evolution from the discovery of neutrino oscillations, Gratta has led the development of liquid Xenon detectors in the search for the neutrinoless double beta decay, an exotic nuclear decay that, if observed, would change our understanding of the quantum nature of neutrinos and help explaining the asymmetry between matter and antimatter in the universe. Gratta is currently the scientific leader of one of the three very large experiments on the subject, world-wide.
In a rather different area of research, Gratta’s group is studying new long range interactions (or an anomalous behavior of gravity) at distances below 50 micrometers. This is achieved with an array of different techniques, from optical levitation of microscopic particles in vacuum, to the use of Mössbauer spectroscopy and, most recently, neutron scattering on nanostructured materials. -
Eunice Han
Student Svcs Offcr 1, Physics
Current Role at StanfordStudent Services Officer 1
-
Patrick Hayden
Stanford Professor of Quantum Physics
BioProfessor Hayden is a leader in the exciting new field of quantum information science. He has contributed greatly to our understanding of the absolute limits that quantum mechanics places on information processing, and how to exploit quantum effects for computing and other aspects of communication. He has also made some key insights on the relationship between black holes and information theory.
-
Leo Hollberg
Professor (Research) of Physics and of Geophysics
BioHow can we make optimal use of quantum systems (atoms, lasers, and electronics) to test fundamental physics principles, enable precision measurements of space-time and when feasible, develop useful devices, sensors, and instruments?
Professor Hollberg’s research objectives include high precision tests of fundamental physics as well as applications of laser physics and technology. This experimental program in laser/atomic physics focuses on high-resolution spectroscopy of laser-cooled and -trapped atoms, non-linear optical coherence effects in atoms, optical frequency combs, optical/microwave atomic clocks, and high sensitivity trace gas detection. Frequently this involves the study of laser noise and methods to circumvent measurement limitations, up to, and beyond, quantum limited optical detection. Technologies and tools utilized include frequency-stabilized lasers and chip-scale atomic devices. Based in the Hansen Experimental Physics Laboratory (HEPL), this research program has strong, synergistic, collaborative connections to the Stanford Center on Position Navigation and Time (SCPNT). Research directions are inspired by experience that deeper understanding of fundamental science is critical and vital in addressing real-world problems, for example in the environment, energy, and navigation. Amazing new technologies and devices enable experiments that test fundamental principles with high precision and sometimes lead to the development of better instruments and sensors. Ultrasensitive optical detection of atoms, monitoring of trace gases, isotopes, and chemicals can impact many fields. Results from well-designed experiments teach us about the “realities” of nature, guide and inform, occasionally produce new discoveries, frequently surprise, and almost always generate new questions and perspectives. -
Khoi Huynh
Fac Spclst 2, Physics
Current Role at StanfordManager of Physics Store & Copy Center
Webmaster of Physics Department website
Physics Department health & safety coordinator
Physics Department space inventory coordinator
Photography & design for Physics Department website and correspondence -
Aurora Ireland
Postdoctoral Scholar, Physics
BioAurora Ireland is broadly interested in early universe cosmology and high energy particle theory. She completed her PhD at the University of Chicago in 2024. Prior in 2018, she obtained a masters degree from the Perimeter Institute for Theoretical Physics.
-
Kent Irwin
Director, Hansen Experimental Physics Laboratory (HEPL), Professor of Physics, of Particle Physics and Astrophysics and of Photon Science
BioIrwin Group web page:
https://irwinlab.stanford.edu/