School of Humanities and Sciences
Showing 351-400 of 2,016 Results
-
Daniela de Angeli Dutra
Postdoctoral Scholar, Biology
BioHello, I am Daniela and I am a disease ecologist and parasitologist from Brazil. My research focuses on disease ecology and my main goal is to fill gaps in research that will lead to a better understanding of the patterns and mechanisms that contribute to parasite spread and the possible ways to mitigate pathogen impact. I have already explored a broad range of avian parasites, from ticks down to protozoans, such as Babesia. However, most of my research is focused on malaria and malaria-like (haemosporidian) parasites. During my undergraduate, master's, and PhD, I studied malaria parasites infecting wild, domestic, and rehabilitating avian hosts. Since then, I have dedicated myself to investigating macroecological and evolutionary patterns of parasite-host dynamics. My current research focuses on the effect of global change on vector-borne diseases. Ultimately, my research should help to improve models to predict, prevent, or mitigate disease outbreaks and human burden.
-
Giulio De Leo
Professor of Oceans, of Earth System Science, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy of Biology
Current Research and Scholarly InterestsI am a theoretical ecologist mostly interested in investigating factors and processes driving the dynamics of natural and harvested populations and on how to use this knowledge to inform practical management. I have worked broadly on life histories analysis, fishery management, dynamics and control of infectious diseases and environmental impact assessment.
-
Joseph M. DeSimone
Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry, of Materials Science and Engineering, and of Operations, Information and Technology at the Graduate School of Business
BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.
The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.
Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.
In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech. -
Trithep Devakul
Assistant Professor of Physics
BioI specialize in theoretical condensed matter physics. My research focuses on emergent quantum phases of matter, particularly those arising from the interplay of topology with electronic interactions and correlations in two-dimensional materials.
-
Persi Diaconis
Mary V. Sunseri Professor in the School of Humanities and Sciences and Professor of Mathematics
Current Research and Scholarly InterestsResearch Interests:
PROBABILITY THEORY
BAYESIAN STATISTICS
STATISTICAL COMPUTING
COMBINATORICS -
Savas Dimopoulos
Hamamoto Family Professor
BioWhat is the origin of mass? Are there other universes with different physical laws?
Professor Dimopoulos has been searching for answers to some of the deepest mysteries of nature. Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab?
Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider at CERN will soon shed light on such questions and lead to a new deeper theory of particle physics, replacing the Standard Model proposed forty years ago. The two leading candidates for new theories are the Supersymmetric Standard Model and theories with Large Extra Dimensions, both proposed by Professor Dimopoulos and collaborators.
Professor Dimopoulos is collaborating on a number of experiments that use the dramatic advances in atom interferometry to do fundamental physics. These include testing Einstein’s theory of general relativity to fifteen decimal precision, atom neutrality to thirty decimals, and looking for modifications of quantum mechanics. He is also designing an atom-interferometric gravity-wave detector that will allow us to look at the universe with gravity waves instead of light, marking the dawn of gravity wave astronomy and cosmology. -
Chunyang Ding
Ph.D. Student in Physics, admitted Summer 2023
BioChunyang Ding is a physicist working on novel implementations of quantum computing, currently living in Redwood City, CA. He graduated from Yale University with a B.S. in Physics (Intensive), and had worked in the labs of Professors Michel Devoret (superconducting qubits, microwave resonators), Nir Navon (ultracold atoms, MOT for Potassium), and Marla Geha (satelite galaxies, statistical analysis). He was previously an associate physicist at IonQ, a trapped ion quantum computing startup associated with Chris Monroe and Jungsang Kim, and is now a PhD student at Stanford/University of Chicago, working on novel fluxonium gate schemes in the lab of Professor David Schuster.
-
Xuehao Ding
Ph.D. Student in Applied Physics, admitted Autumn 2018
Current Research and Scholarly InterestsI am an Applied Physics PhD candidate in Baccus lab co-advised by Surya Ganguli. My research focuses on building encoding models of the retina with various biophysical properties especially for natural scenes and answering scientific questions based on computational models. I believe that the core problem in the field of sensory systems is to understand the representation manifold and I am achieving this goal with methods of differential geometry, deep learning, statistical physics, etc.
-
José R. Dinneny
Professor of Biology
Current Research and Scholarly InterestsThe biology of root systems is governed by both micro-scale and systemic signaling that allows the plant to integrate these complex variables into growth and branching decisions that ultimately determine the efficiency resources are captured. Research in my lab is aimed at understanding the response of roots to water-limiting conditions and is exploring this process at different organizational scales from the individual cell type to the level of the whole plant.
-
Rodolfo Dirzo
Associate Dean for Integrative Initiatives in Environmental Justice, Bing Prof in Environmental Science, Professor of Earth System Science and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsEcological and evolutionary aspects of plant-animal interactions, largely but not exclusively, in tropical forest ecosystems.
Conservation biology in tropical ecosystems.
Studies on biodiversity.
Education, at all levels, on scientific practice, ecology and biodiversity conservation. -
Scott Dixon
Associate Professor of Biology
On Leave from 01/01/2025 To 03/31/2025Current Research and Scholarly InterestsMy lab is interested in the relationship between cell death and metabolism. Using techniques drawn from many disciplines my laboratory is investigating how perturbation of intracellular metabolic networks can result in novel forms of cell death, such as ferroptosis. We are interested in applying this knowledge to find new ways to treat diseases characterized by insufficient (e.g. cancer) or excessive (e.g. neurodegeneration) cell death.
-
Tristram O'Brien Dodge
Ph.D. Student in Biology, admitted Autumn 2021
BioI'm a PhD student in the Schumer Lab, interested in adaptation, hybridization, genome structure, and conservation.
-
Sebastian Doniach
Professor of Applied Physics and of Physics, Emeritus
Current Research and Scholarly InterestsStudy of changes in conformation of proteins and RNA using x-ray scattering
-
David Donoho
Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences
On Leave from 01/01/2025 To 03/31/2025BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.
Research Statement:
My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems. -
Persis Drell
Provost, Emerita, James and Anna Marie Spilker Professor, Professor of Materials Science and Engineering and of Physics
BioPersis Drell is the James and Anna Marie Spilker Professor in the School of Engineering, a professor of materials science and engineering, and a professor of physics. From Feb 1, 2017 to Sept. 30, 2023, Drell was the provost of Stanford University.
Prior to her appointment as provost in February 2017, she was dean of the Stanford School of Engineering from 2014 to 2017 and director of U.S. Department of Energy SLAC National Acceleratory Laboratory from 2007 to 2012.
She earned her bachelor’s degree in mathematics and physics from Wellesley College and her PhD in atomic physics from UC Berkeley. Before joining the faculty at Stanford in 2002, she was a faculty member in the physics department at Cornell University for 14 years.