School of Humanities and Sciences


Showing 1-50 of 69 Results

  • Tom Abel

    Tom Abel

    Professor of Particle Physics and Astrophysics and of Physics
    On Leave from 10/01/2023 To 06/30/2024

    BioWhat were the first objects that formed in the Universe? Prof. Abel's group explores the first billion years of cosmic history using ab initio supercomputer calculations. He has shown from first principles that the very first luminous objects are very massive stars and has developed novel numerical algorithms using adaptive-mesh-refinement simulations that capture over 14 orders of magnitude in length and time scales. He currently continues his work on the first stars and first galaxies and their role in chemical enrichment and cosmological reionization. His group studies any of the first objects to form in the universe: first stars, first supernovae, first HII regions, first magnetic fields, first heavy elements, and so on. Most recently he is pioneering novel numerical algorithms to study collisionless fluids such as dark matter which makes up most of the mass in the Universe as well as astrophysical and terrestrial plasmas. He was the director of the Kavli Institute for Particle Astrophysics and Cosmology and Division Director at SLAC 2013-2018.

  • Steven Allen

    Steven Allen

    Professor of Physics and of Particle Physics and Astrophysics

    Current Research and Scholarly InterestsObservational astrophysics and cosmology; galaxies, galaxy clusters, dark matter and dark energy; applications of statistical methods; X-ray astronomy; X-ray detector development; optical astronomy; mm-wave astronomy; radio astronomy; gravitational lensing.

  • Philip Bucksbaum

    Philip Bucksbaum

    Marguerite Blake Wilbur Professor of Natural Science and Professor of Photon Science, of Applied Physics and of Physics

    BioPhil Bucksbaum holds the Marguerite Blake Wilbur Chair in Natural Science at Stanford University, with appointments in Physics, Applied Physics, and in Photon Science at SLAC. He conducts his research in the Stanford PULSE Institute (https://web.stanford.edu/~phbuck). He and his wife Roberta Morris live in Menlo Park, California. Their grown daughter lives in Toronto.

    Bucksbaum was born and raised in Iowa, and graduated from Harvard in 1975. He attended U.C. Berkeley on a National Science Foundation Graduate Fellowship and received his Ph.D. in 1980 for atomic parity violation experiments under Professor Eugene Commins, with whom he also has co-authored a textbook, “Weak Interactions of Leptons and Quarks.” In 1981 he joined Bell Laboratories, where he pursued new applications of ultrafast coherent radiation from terahertz to vacuum ultraviolet, including time-resolved VUV ARPES, and strong-field laser-atom physics.

    He joined the University of Michigan in 1990 and stayed for sixteen years, becoming Otto Laporte Collegiate Professor and then Peter Franken University Professor. He was founding Director of FOCUS, a National Science Foundation Physics Frontier Center, where he pioneered research using ultrafast lasers to control quantum systems. He also launched the first experiments in ultrafast x-ray science at the Advanced Photon Source at Argonne National Lab. In 2006 Bucksbaum moved to Stanford and SLAC, and organized the PULSE Institute to develop research utilizing the world’s first hard x-ray free-electron laser, LCLS. In addition to directing PULSE, he has previously served as Department Chair of Photon Science and Division Director for Chemical Science at SLAC. His current research is in laser interrogation of atoms and molecules to explore and image structure and dynamics on the femtosecond scale. He currently has more than 250 publications.

    Bucksbaum is a Fellow of the APS and the Optical Society, and has been elected to the National Academy of Sciences and the American Academy of Arts and Sciences. He has held Guggenheim and Miller Fellowships, and received the Norman F. Ramsey Prize of the American Physical Society for his work in ultrafast and strong-field atomic and molecular physics. He served as the Optical Society President in 2014, and also served as the President of the American Physical Society in 2020. He has led or participated in many professional service activities, including NAS studies, national and international boards, initiatives, lectureships and editorships.

  • Patricia Burchat

    Patricia Burchat

    Gabilan Professor

    Current Research and Scholarly InterestsObservational cosmology. Dark energy. Weak gravitational lensing.
    Preparing for science with the Legacy Survey of Space & Time (LSST).
    Member of the LSST Dark Energy Science Collaboration.

  • Blas Cabrera

    Blas Cabrera

    Stanley G. Wojcicki Professor

    BioFor five years up to mid-2015 has been Spokesperson for the SuperCDMS (Cryogenic Dark Matter Search) collaboration with twenty-two member institutions, which mounted a series of experiments in the Soudan mine in northern Minnesota to search for the dark matter in the form of weakly interacting massive particles or WIMPs. This direct detection effort has lead the world in sensitivity for much of the past ten years and utilizes novel cryogenic detectors using germanium and silicon crystals operated below 0.1 K. The completed CDMS II experiment operated 4 kg of germanium and 1 kg of silicon for two years and set the most sensitive limits at the time for spin-independent interactions for WIMPs masses above 40 GeV/c2. The SuperCDMS Soudan experiment operated 9 kg of germanium until the end of calendar 2015.

    He was selected for a three-term as Project Director, through mid 2018, for the approved second generation (G2) SuperCDMS SNOLAB experiment which will operate 30 kg of Ge and Si detectors in the deeper SNOLAB facility in Canada. The project searches for low mass WIMPs (0.1 - 10 GeV/c2) and the cryostat facility will allow future upgrades to search down to the solar neutrino floor. It has recently been approved for full construction by the DOE and NSF.

  • Steven Chu

    Steven Chu

    William R. Kenan Jr. Professor, Professor of Molecular and Cellular Physiology and of Energy Science and Engineering

    Current Research and Scholarly InterestsSynthesis, functionalization and applications of nanoparticle bioprobes for molecular cellular in vivo imaging in biology and biomedicine. Linear and nonlinear difference frequency mixing ultrasound imaging. Lithium metal-sulfur batteries, new approaches to electrochemical splitting of water. CO2 reduction, lithium extraction from salt water

  • Sarah Church

    Sarah Church

    Professor of Physics
    On Leave from 01/01/2024

    Current Research and Scholarly InterestsExperimental & Observational Astrophysics and Cosmology

  • Trithep Devakul

    Trithep Devakul

    Assistant Professor of Physics

    BioI am a theoretical condensed matter physicist. My general research interests lie in exploring all the exotic states of matter that can arise in quantum systems.

    I am currently interested in studying topological states that can arise in a class of 2D quantum materials known as moiré materials.

    I did my bachelor's at Northeastern, a PhD at Princeton, and a postdoc at MIT, before joining Stanford as an assistant professor. I grew up in Bangkok, Thailand.

  • Savas Dimopoulos

    Savas Dimopoulos

    Hamamoto Family Professor

    BioWhat is the origin of mass? Are there other universes with different physical laws?

    Professor Dimopoulos has been searching for answers to some of the deepest mysteries of nature. Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab?

    Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider at CERN will soon shed light on such questions and lead to a new deeper theory of particle physics, replacing the Standard Model proposed forty years ago. The two leading candidates for new theories are the Supersymmetric Standard Model and theories with Large Extra Dimensions, both proposed by Professor Dimopoulos and collaborators.

    Professor Dimopoulos is collaborating on a number of experiments that use the dramatic advances in atom interferometry to do fundamental physics. These include testing Einstein’s theory of general relativity to fifteen decimal precision, atom neutrality to thirty decimals, and looking for modifications of quantum mechanics. He is also designing an atom-interferometric gravity-wave detector that will allow us to look at the universe with gravity waves instead of light, marking the dawn of gravity wave astronomy and cosmology.

  • Persis Drell

    Persis Drell

    Provost, Emerita, James and Anna Marie Spilker Professor, Professor of Materials Science and Engineering and of Physics

    BioPersis Drell is the James and Anna Marie Spilker Professor in the School of Engineering, a professor of materials science and engineering, and a professor of physics. From Feb 1, 2017 to Sept. 30, 2023, Drell was the provost of Stanford University.

    Prior to her appointment as provost in February 2017, she was dean of the Stanford School of Engineering from 2014 to 2017 and director of U.S. Department of Energy SLAC National Acceleratory Laboratory from 2007 to 2012.

    She earned her bachelor’s degree in mathematics and physics from Wellesley College and her PhD in atomic physics from UC Berkeley. Before joining the faculty at Stanford in 2002, she was a faculty member in the physics department at Cornell University for 14 years.

  • Benjamin Ezekiel Feldman

    Benjamin Ezekiel Feldman

    Assistant Professor of Physics

    Current Research and Scholarly InterestsHow do material properties change as a result of interactions among electrons, and what is the nature of the new phases that result? What novel physical phenomena and functionality (e.g., symmetry breaking or topological excitations) can be realized by combining materials and device elements to produce emergent behavior? How can we leverage nontraditional measurement techniques to gain new insight into quantum materials? These are some of the overarching questions we seek to address in our research.

    We are interested in a variety of quantum systems, especially those composed of two-dimensional flakes and heterostructures. This class of materials has been shown to exhibit an incredible variability in their properties, with the further benefit that they are highly tunable through gating and applied fields.

  • David Goldhaber-Gordon

    David Goldhaber-Gordon

    Professor of Physics and, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsHow do electrons organize themselves on the nanoscale?

    We know that electrons are charged particles, and hence repel each other; yet in common metals like copper billions of electrons have plenty of room to maneuver and seem to move independently, taking no notice of each other. Professor Goldhaber-Gordon studies how electrons behave when they are instead confined to tiny structures, such as wires only tens of atoms wide. When constrained this way, electrons cannot easily avoid each other, and interactions strongly affect their organization and flow. The Goldhaber-Gordon group uses advanced fabrication techniques to confine electrons to semiconductor nanostructures, to extend our understanding of quantum mechanics to interacting particles, and to provide the basic science that will shape possible designs for future transistors and energy conversion technologies. The Goldhaber-Gordon group makes measurements using cryogenics, precision electrical measurements, and novel scanning probe techniques that allow direct spatial mapping of electron organization and flow. For some of their measurements of exotic quantum states, they cool electrons to a fiftieth of a degree above absolute zero, the world record for electrons in semiconductor nanostructures.

  • Peter Graham

    Peter Graham

    Professor of Physics

    Current Research and Scholarly InterestsWhat physics lies beyond the Standard Model and how can we discover it?

    Professor Graham is broadly interested in theoretical physics beyond the Standard Model which often involves cosmology, astrophysics, general relativity, and even atomic physics. The Standard Model leaves many questions unanswered including the nature of dark matter and the origins of the weak scale, the cosmological constant, and the fundamental fermion masses. These clues are a guide to building new theories beyond the Standard Model. He recently proposed a new solution to the hierarchy problem which uses dynamical relaxation in the early universe instead of new physics at the weak scale.

    Professor Graham is also interested in inventing novel experiments to discover such new physics, frequently using techniques from astrophysics, condensed matter, and atomic physics. He is a proposer and co-PI of the Cosmic Axion Spin Precession Experiment (CASPEr) and the DM Radio experiment. CASPEr uses nuclear magnetic resonance techniques to search for axion dark matter. DM Radio uses high precision magnetometry and electromagnetic resonators to search for hidden photon and axion dark matter. He has also proposed techniques for gravitational wave detection using atom interferometry.

    Current areas of focus:

    Theory beyond the Standard Model
    Dark matter models and detection
    Novel experimental proposals for discovering new physics such as axions and gravitational waves
    Understanding results from experiments ranging from the LHC to early universe cosmology

  • Giorgio Gratta

    Giorgio Gratta

    Ray Lyman Wilbur Professor

    BioGiorgio Gratta is a Professor of Physics at Stanford university where he is currently serving as chair of the Physics Department. Gratta is an experimentalist, with research interests in the broad area of the physics of fundamental particles and their interactions. While his career started with experiments at particle colliders, since at Stanford Gratta has tackled the study of neutrinos and gravity at the shortest distances. With two landmark experiments using neutrinos produced by nuclear reactors, made observations in the area of neutrino oscillations, and with one of them was first in reporting oscillations using artificial neutrinos and establishing the finite nature of neutrino masses. The same experiment was also first to detect neutrinos from the interior of our planet, providing a new tool for the Earth sciences. At a very different energy scale, Gratta and his group substantially advanced the techniques to detect ultra-high energy neutrinos in cosmic radiation, using acoustic signals in large bodies of water.
    In more recent times, Gratta has led the development of liquid Xenon detectors in the search for the neutrinoless double beta decay, a nuclear decay that if observed would change our understanding of the quantum nature of neutrinos and help explaining the asymmetry between matter and antimatter in the universe. Gratta is currently the scientific leader of one of the three very large experiments on the subject, world-wide.
    In a parallel development, Gratta’s group is studying new long range interactions (or an anomalous behavior of gravity) at distances below 50 micrometers. This is achieved with an array of different techniques, from optical levitation of microscopic particles in vacuum, to the use of Mössbauer spectroscopy and, most recently, neutron scattering on nanostructured materials.

  • Patrick Hayden

    Patrick Hayden

    Stanford Professor of Quantum Physics and Professor, by courtesy, of Computer Science

    BioProfessor Hayden is a leader in the exciting new field of quantum information science. He has contributed greatly to our understanding of the absolute limits that quantum mechanics places on information processing, and how to exploit quantum effects for computing and other aspects of communication. He has also made some key insights on the relationship between black holes and information theory.

  • Leo Hollberg

    Leo Hollberg

    Professor (Research) of Physics and of Geophysics

    BioHow can we make optimal use of quantum systems (atoms, lasers, and electronics) to test fundamental physics principles, enable precision measurements of space-time and when feasible, develop useful devices, sensors, and instruments?

    Professor Hollberg’s research objectives include high precision tests of fundamental physics as well as applications of laser physics and technology. This experimental program in laser/atomic physics focuses on high-resolution spectroscopy of laser-cooled and -trapped atoms, non-linear optical coherence effects in atoms, optical frequency combs, optical/microwave atomic clocks, and high sensitivity trace gas detection. Frequently this involves the study of laser noise and methods to circumvent measurement limitations, up to, and beyond, quantum limited optical detection. Technologies and tools utilized include frequency-stabilized lasers and chip-scale atomic devices. Based in the Hansen Experimental Physics Laboratory (HEPL), this research program has strong, synergistic, collaborative connections to the Stanford Center on Position Navigation and Time (SCPNT). Research directions are inspired by experience that deeper understanding of fundamental science is critical and vital in addressing real-world problems, for example in the environment, energy, and navigation. Amazing new technologies and devices enable experiments that test fundamental principles with high precision and sometimes lead to the development of better instruments and sensors. Ultrasensitive optical detection of atoms, monitoring of trace gases, isotopes, and chemicals can impact many fields. Results from well-designed experiments teach us about the “realities” of nature, guide and inform, occasionally produce new discoveries, frequently surprise, and almost always generate new questions and perspectives.

  • Shamit Kachru

    Shamit Kachru

    Professor of Physics and Director, Stanford Institute for Theoretical Physics, Emeritus

    Current Research and Scholarly InterestsMy current research is focused in three directions:

    — Mathematical aspects of string theory (with a focus on BPS state counts, black holes, and moonshine)

    — Quantum field theory approaches to condensed matter physics (with a focus on physics of non-Fermi liquids)

    — Theoretical biology, with a focus on evolution and ecology

  • Renata Kallosh

    Renata Kallosh

    Stanford W. Ascherman, MD Professor, Emerita

    BioWhat is the mathematical structure of supergravity/string theory and its relation to cosmology?

    Professor Kallosh works on the general structure of supergravity and string theory and their applications to cosmology. Her main interests are related to the models early universe inflation and dark energy in string theory. She develops string theory models explaining the origin of the universe and its current acceleration. With her collaborators, she has recently constructed de Sitter supergravity, which is most suitable for studies of inflation and dark energy and spontaneously broken supersymmetry.

    She is analyzing possible consequences of the expected new data from the Large Hadron Collider (LHC) and the results of current and future cosmological observations, including Planck satellite CMB data. These results may affect the relationship between superstring theory and supergravity, and the real world. Professor Kallosh works, in particular, on future tests of string theory by CMB data and effective supergravity models with flexible amplitude of gravitational waves produced during inflation.

  • Aharon Kapitulnik

    Aharon Kapitulnik

    Theodore and Sydney Rosenberg Professor of Applied Physics and Professor of Physics

    BioAharon Kapitulnik is the Theodore and Sydney Rosenberg Professor in Applied Physics at the Departments of Applied Physics and Physics at Stanford University. His research focuses on experimental condensed matter physics, while opportunistically, also apply his methods to tabletop experimental studies of fundamental phenomena in physics. His recent studies cover a broad spectrum of phenomena associated with the behavior of correlated and disordered electron systems, particularly in reduced dimensions, and the development of effective instrumentation to detect subtle signatures of physical phenomena.

    Among other recognitions, his activities earned him the Alfred P. Sloan Fellowship (1986-90), a Presidential Young Investigator Award (1987-92), a Sackler Scholar at Tel-Aviv University (2006), the Heike Kamerlingh Onnes Prize for Superconductivity Experiment (2009), a RTRA (Le Triangle de la Physique) Senior Chair (2010), and the Oliver Buckley Condensed Matter Prize of the American Physical Society (2015). Aharon Kapitulnik is a Fellow of the American Physical Society, a Fellow of the American Academy of Arts and Sciences, a Fellow of the American Association for the Advancement of Science and a member of the National Academy of Sciences. Kapitulnik holds a Ph.D. in Physics from Tel-Aviv University (1984).

  • Steven Kivelson

    Steven Kivelson

    Prabhu Goel Family Professor

    Current Research and Scholarly InterestsPast Graduate Students:

    Assa Auerbach - Professor of Physics, Technion University
    Weikang Wu - deceased.
    Shoucheng Zhang (final year) - deceased.
    Shivaji Sondhi - Wykham Professor of Physics, Oxford University
    Markku Salkola - Facebook, Menlo Park
    Vadim Oganesyan - Professor of Physics CUNY
    Kyrill Shtengle - Professor of Physics, UC Riverside
    Oron Zachar
    Zohar Nussinov - Professor of Physics, Washington University
    Erica W. Carlson - Professor of Physics, Purdue University
    Edward Sleva
    John Robertson - Citadel, Austin
    Wei-Feng Tsai
    Ian Bindloss
    Paul Oreto - Head of Machine Learning at Cantor Fitzgerald, New York
    Erez Berg - Professor of Physics, Weizmann Institute
    Hong Yao - Professor of Physics, Tsinghua University
    Li Liu
    George Karakonstantakis
    Sam Lederer
    Laimei Nie - Assistant Professor of Physics, Purdue University
    Ilya Esterlis - Assistant Professor, University of Wisconsin, Madison
    John Dodaro
    Chao Wang - Citadel LLC, New York
    Yue Yu - Post Doctoral Fellow, University of Wisconsin, Milwaukee
    Yuval Gannot - Google,

    Past Post Docs:

    Douglas Stone - Professor of Physics, Yale University
    Gergeley Zimanyi - Professor of Physics, UC Davis
    Dror Orgad - Professor of Physics, Tel Aviv University
    Hae-Young Kee - Professor of Physics, University of Toronto
    Oskar Vafek - Professor of Physics, University of Florida
    Eun-Ah Kim - Professor of Physics, Cornell University
    Srinivas Raghu - Professor of Physics, Stanford University
    Maisam Barkeshli - Professor of Physics, University of Maryland
    Pavan Hosur - Professor of Physics, University of Houston
    Yi Zhang - Professor of Physics, Tsinghua University
    Abulhassan Vaezi - Professor of Physics, Sharifi University
    Jingyuan Chen - Assistant Professor of Physics, Tsinghua University
    Yoni Schattner - Research Scientist, Quantum Computing at the Amazon Center for
    Quantum Computing at Caltech, Pasadena
    John Sous - Assistant Professor of Chemistry, UCSD

    Past Undergraduate Research Assistants:

    Kevin S. Wang - Graduate student, Princeton University
    Jeffrey Chang - Graduate student, Harvard University
    Vijay Nathan Josephs - Undergraduate, Stanford University

    Unofficial Past Students and Post Docs:

    (i.e. where I believe I played the corresponding mentoring role, but the connection
    was unofficial - a shameless attempt to claim partial credit):
    Shoucheng Zhang - (did his final year of PhD work, the part in CMT, under my direction and
    worked with me extensively while a post doc)
    Jainendra Jain - (did the final portion of his PhD work, the part relevant to the quantum
    Hall effect, under my guidance and worked with me extensively while a post doc)
    Daniel Rokhsar - (No official connection at all, but did significant portion of both his
    graduate and post-doctoral research in collaboration with me.)
    Akash Maharaj - (was a student of Srinivas Raghu with whom he worked extensively, but
    he also did a significant portion of his graduate research in collaboration with me.)

  • Chao-Lin Kuo

    Chao-Lin Kuo

    Professor of Physics and of Particle Physics and Astrophysics

    Current Research and Scholarly Interests1. Searching/measuring primordial gravitational waves in the CMB (Cosmic Microwave Background) through experiments at the South Pole (BICEP and SPT), high plateaus in Tibet (AliCPT) and Atacama (Simons Observatory), as well as in space (LiteBIRD).

    2. Development and applications of superconducting detector and readout systems in astrophysics, cosmology, and other areas.

    3. Novel detector concepts for axion searches (https://youtu.be/UBscQSFzpLE)

  • Robert Laughlin

    Robert Laughlin

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences

    BioProfessor Laughlin is a theorist with interests ranging from hard-core engineering to cosmology. He is an expert in semiconductors (Nobel Prize 1998) and has also worked on plasma and nuclear physics issues related to fusion and nuclear-pumped X-ray lasers. His technical work at the moment focuses on “correlated-electron” phenomenology – working backward from experimental properties of materials to infer the presence (or not) of new kinds of quantum self-organization. He recently proposed that all Mott insulators – including the notorious doped ones that exhibit high-temperature superconductivity – are plagued by a new kind of subsidiary order called “orbital antiferromagnetism” that is difficult to detect directly. He is also the author of A Different Universe, a lay-accessible book explaining emergent law.

  • Benjamin Lev

    Benjamin Lev

    Professor of Applied Physics and of Physics

    Current Research and Scholarly InterestsLevLab is a joint AMO & CM experimental group that explores the question: Can new classes of states and phases of quantum matter be created far away from equilibrium, and if so, what do we learn? We use our new technique, confocal cavity QED, to both engineer out-of-equilibrium quantum gases and 2D materials and to image and control their new properties.

  • Craig Levin

    Craig Levin

    Professor of Radiology (Molecular Imaging Program at Stanford/Nuclear Medicine) and, by courtesy, of Physics, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsMolecular Imaging Instrumentation
    Laboratory

    Our research interests involve the development of novel instrumentation and software algorithms for in vivo imaging of cellular and molecular signatures of disease in humans and small laboratory animal subjects.

  • Andrei Linde

    Andrei Linde

    Humanities and Sciences Professor

    BioWhat is the origin and the global structure of the universe?

    For a long time, scientists believed that our universe was born in the big bang, as an expanding ball of fire. This scenario dramatically changed during the last 35 years. Now we think that initially the universe was rapidly inflating, being in an unstable energetic vacuum-like state. It became hot only later, when this vacuum-like state decayed. Quantum fluctuations produced during inflation are responsible for galaxy formation. In some places, these quantum fluctuations are so large that they can produce new rapidly expanding parts of the universe. This process makes the universe immortal and transforms it into a multiverse, a huge fractal consisting of many exponentially large parts with different laws of low-energy physics operating in each of them.

    Professor Linde is one of the authors of inflationary theory and of the theory of an eternal inflationary multiverse. His work emphasizes the cosmological implications of string theory and supergravity.

    Current areas of focus:

    - Construction of realistic models of inflation based on supergravity and string theory
    - Investigation of conceptual issues related to the theory of inflationary multiverse

  • John Lipa

    John Lipa

    Professor (Research) of Physics, Emeritus

    BioJohn Lipa received his PhD at the University of Western Austrailia. He has acted as an assistant professor, senior research associate, and professor at Stanford University. Research interests include testing of various aspects of the renormalization group theory of cooperative phase transitions.

  • Raghu Mahajan

    Raghu Mahajan

    Senior Research Scientist

    Current Research and Scholarly InterestsMy research interests are wide-ranging:

    1) In the context of gravity, how does spacetime emerge from its dual quantum system? How does the dual quantum system encode the answers to questions that involve local physics in semi-classical gravity? How do you avoid the "firewall" paradox in the context of black-hole evaporation?

    2) How do you calculate electrical and heat currents in strongly-coupled many-body systems? How do you explain the linear-in-temperature resistivity in high-temperature cuprates?

    3) Use tensor network methods to study electrical and heat transport and also the real-time dynamics of systems out of thermal equilibrium.

  • Vahe Petrosian

    Vahe Petrosian

    Professor of Physics and of Applied Physics

    BioHow do things evolve in the universe? How are particles accelerated in the universe?

    Professor Petrosian’s research covers many topics in the broad area of theoretical astrophysics and cosmology, with a strong focus on high-energy astrophysical processes.

    Cosmological studies deal with global properties of the universe, where the main focus is the understanding of the evolution of the universe at high redshifts, through studies of the evolutions of population of sources such as galaxies and quasars or active galactic nuclei, gamma-ray bursts, using new statistical techniques developed in collaboration with Prof. B. Efron of the Department of Statistics. Another area of research is the use of gravitational lensing in measuring mass in the universe.

    High-energy astrophysics research involves interpretation of non-thermal astronomical sources where particles are accelerated to very high energies and emit various kinds of radiation. These processes occur on many scales and in all sorts of objects: in the magnetosphere of planets, in the interplanetary space, during solar and stellar flares, in the accretion disks and jets around stellar-size and super-massive black holes, at centers of galaxies, in gamma-ray bursts, in supernovae, and in the intra-cluster medium of clusters of galaxies. Plasma physics processes common in all these sources for acceleration of particles and their radiative signature is the main focus of the research here.

  • Xiaoliang Qi

    Xiaoliang Qi

    Professor of Physics

    BioMy current research interest is the interplay of quantum entanglement, quantum gravity and quantum chaos. The characterization of quantum information and quantum entanglement has provided novel understanding to space-time geometry, and relate the dynamics of chaotic many-body systems to the dynamics of space-time, i.e. quantum gravity theory. Based on recent progress in holographic duality (also known as AdS/CFT), my goal is to use tools such as tensor networks and solvable models to provide more microscopic understanding to the emergent space-time geometry from quantum states and quantum dynamics.

    I am also interested in topological states and topological phenomena in condensed matter systems.

    You can find my recent research topics in some talks online:

    http://online.kitp.ucsb.edu/online/chord18/opgrowth/
    https://www.youtube.com/watch?v=__9VBaLfC6Y&t=42s
    http://online.kitp.ucsb.edu/online/qinfo_c17/qi/

  • Stephen Quake

    Stephen Quake

    Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics

    Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.

  • Srinivas Raghu

    Srinivas Raghu

    Professor of Physics

    BioI am interested in the emergent behavior of quantum condensed matter systems. Some recent research topics include non-Fermi liquids, quantum criticality, statistical mechanics of strongly interacting and disordered quantum systems, physics of the half-filled Landau level, quantum Hall to insulator transitions, superconductor-metal-insulator transitions, and the phenomenology of quantum materials.

    Past contributions that I'm particularly proud of include the co-founding of the subject of topological photonics (with Duncan Haldane), scaling theories of non-Fermi liquid metals (with Shamit Kachru and Gonzalo Torroba), Euclidean lattice descriptions of Chern-Simons matter theories and their dualities in 2+1 dimensions (with Jing-Yuan Chen and Jun Ho Son), and 'dual' perspectives of quantum Hall transitions (with Prashant Kumar and Michael Mulligan).