Institute for Stem Cell Biology and Regenerative Medicine
Showing 41-60 of 153 Results
-
Asiri Ediriwickrema MD, PhD
Assistant Professor of Medicine (Hematology)
BioAsiri Ediriwickrema, MD, PhD, is an Assistant Professor of Medicine (Hematology) at the Stanford University School of Medicine. His clinical focus is on the diagnosis, evaluation, and management of patients with myelodysplastic neoplasms and clonal hematopoiesis.
Dr. Ediriwickrema earned his undergraduate degree in Engineering from the Massachusetts Institute of Technology, his MD (Cum Laude) from Yale University, and his PhD from Stanford University. He completed his residency in Internal Medicine and fellowship in Hematology at Stanford, where he also conducted his doctoral and postdoctoral research in the laboratory of Dr. Ravi Majeti. His research identified novel populations of multipotent progenitor cells in normal hematopoiesis and leukemia stem cells in acute myeloid leukemia (AML).
He currently leads a systems hematology laboratory that integrates advanced single-cell technologies, computational biology, and functional hematology to study both normal and malignant blood development. His research has been supported by numerous awards, including the NIH Ruth L. Kirschstein National Research Service Award (F32), the American Society of Hematology Scholar Award, and the Edward P. Evans Foundation Young Investigator Award. -
Heather Gentner
Director of Finance and Administration (SoM), Stem Cell Bio Regenerative Med Institute
Current Role at StanfordI am the Director of Finance and Administration for the Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM) in the School of Medicine. I oversee and carry out administrative and financial related functions for the department.
-
Natalia Gomez-Ospina
Assistant Professor of Pediatrics (Genetics)
Current Research and Scholarly InterestsDr. Gomez-Ospina is a physician scientist and medical geneticist with a strong interest in the diagnosis and management of genetic diseases.
1) Lysosomal storage diseases:
Her research program is on developing better therapies for a large class of neurodegenerative diseases in children known as lysosomal storage disorders. Her current focus is on developing genome editing of hematopoietic stem cells as a therapeutic approach for these diseases beginning with Mucopolysaccharidosis type 1 and Gaucher disease. She established a genetic approach where therapeutic proteins can be targeted to a single well-characterized place in the genome known as a safe harbor. This approach constitutes a flexible, “one size fits all” approach that is independent of specific genes and mutations. This strategy, in which the hematopoietic system is commandeered to express and deliver therapeutic proteins to the brain can potentially change the current approaches to treating childhood neurodegenerative diseases and pave the way for alternative therapies for adult neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease
2) Point of care ammonia testing
She also works in collaboration with other researchers at Stanford to develop point-of-care testing for serum ammonia levels. Such device will greatly improve the quality of life of children and families with metabolic disorders with hyperammonemia.
3) Gene discovery
Dr Gomez-Ospina lead a multi-institutional collaboration resulting in the discovery of a novel genetic cause of neonatal and infantile cholestatic liver disease. She collaborated in the description of two novel neurologic syndromes caused by mutations in DYRK1 and CHD4.
For more information go to our website:
https://www.gomezospina.com/ -
Stefan Heller, PhD, MS
Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsOur research focuses on the inner ear, from its earliest manifestation as one of the cranial placodes until it has developed into a mature and functioning organ. We are interested in how the sensory epithelia of the inner ear that harbor the sensory hair cells develop, how the cells mature, and how these epithelia respond to toxic insults. The overarching goal of this research is to find ways to regenerate lost sensory hair cells in mammals.
-
Marco Herrera
Postdoctoral Scholar, Stem Cell Biology and Regenerative Medicine
BioNon-viral gene delivery enthusiast. Focused on optimizing non-viral delivery using LNPs to all applications as it pertains to varied nucleic acid delivery applications :).
Equally invested in developing logic-gated CAR T cells for the treatment of AML. -
Siddhartha Jaiswal
Associate Professor of Pathology
Current Research and Scholarly InterestsWe identified a common disorder of aging called clonal hematopoiesis of indeterminate potential (CHIP). CHIP occurs due to certain somatic mutations in blood stem cells and represents a precursor state for blood cancer, but is also associated with increased risk of cardiovascular disease and death. We hope to understand more about the biology and clinical implications of CHIP using human and model system studies.