School of Medicine


Showing 1-20 of 52 Results

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    Current Research and Scholarly InterestsUbiquitin signaling: structure, function, and therapeutics
    Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
    We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.

    Protein self-assembly processes and applications.
    The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.

    Multiscale imaging and technology developments.
    Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators.

  • Rebecca D. Walker

    Rebecca D. Walker

    Clinical Associate Professor, Emergency Medicine

    Current Research and Scholarly InterestsInterests include international development in emergency care, healthcare disparities, wilderness medicine, human rights, administration

  • Dennis Wall

    Dennis Wall

    Professor of Pediatrics (Clinical Informatics), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsSystems biology for design of clinical solutions that detect and treat disease

  • Brian A. Wandell

    Brian A. Wandell

    Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and of Education

    Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes. Image systems simulations of optics and sensors and image processing. Data and computation management for reproducible research.

  • Bing Wang

    Bing Wang

    Postdoctoral Scholar, Stem Cell Transplantation

    BioMy academic training and research experience have equipped me with multidisciplinary skills and knowledge of molecular biology and immunology.

    I led two projects when I was an undergraduate, in which I got primary academic learning. My team member and I investigated the bacteria content in drinking water from two types of machines that are commonly used in colleges under the guidance of our experimental microbiology teacher Zhihong Zhong. Secondly, we produced a hybridoma cell line secreting monoclonal antibody against the core antigen of the hepatitis C virus (HCV) to develop an ELISA kit for the detection of HCV under the guidance of Dr. Rushi Liu and Minjing Liao.

    Thereafter, as a Ph. D. candidate at Xiaoming Feng’s lab, my research primarily focused on understanding the biology of regulatory T cells (Treg) and CD11c+ myeloid cells using cutting-edge single-cell sequencing and conditional knockout mice under healthy and disease conditions. We first revealed the heterogeneity and bifurcated differentiation pathway of human Tregs from normal donors and transplanted patients at the single-cell transcriptome level. A subsequent first and corresponding author publication identified a key innate responsive protein in CD11c+ alveolar macrophages, NRP2, that protects mice from lung injury via promoting the phagocytosis of neutrophils. I also participated in two projects regarding the role of a serine/threonine kinase, LKB1, in mice CD11c+ dendritic cells from lymphoid tissues and adipose tissue with diet-induced obesity. These academic experiences guided me into a strong passion and independent capacities for biomedical studies.

    For my postdoctoral training, I will focus on developing Treg therapies and genetic stem cell therapy to cure patients with IPEX syndrome (a severe autoimmune disease) at preclinical and clinical stages, and other immune disorders. My sponsor Dr. Rosa Bacchetta is a well-known leader in treating IPEX patients and developing Treg therapies. My co-mentor Dr. Maria Grazia Roncarolo is a well-recognized pediatric immunologist and also one of the pioneers in the stem cell and gene therapy field, who discovered the type 1 regulatory T cells or Tr1 cells and translate the scientific discoveries into novel Treg therapies. Both of them have an excellent record of training postdoctoral fellows. The proposed projects will provide me with great opportunities in cutting-edge technology and translational research and outline a set of career development including grant writing, public presentation, and lab management, which will enhance my ability to become an independent investigator and help me to reach my goal of developing efficient and safe Treg therapies for a wide range of immune disorders and associated human diseases.

  • C. Jason Wang, MD, PhD

    C. Jason Wang, MD, PhD

    LCY: Tan Lan Lee Professor and Professor of Pediatrics (General Pediatrics) and of Health Policy

    BioDr. Wang is the Director of Center for Policy, Outcomes and Prevention. Prior to coming to Stanford in 2011, he was a faculty member at Boston University Schools of Medicine and Public Health. His other professional experiences include working as a management consultant with McKinsey and Company and serving as the project manager for Taiwan's National Health Insurance Reform Task-force. His current interests include: 1) COVID-19 related policies; 2) developing tools for assessing and improving the value of healthcare; 3) facilitating the use of mobile technology in improving quality of care; 4) supporting competency-based medical education curriculum, and 5) engaging in healthcare delivery and payment reforms.

  • Jinglong Wang

    Jinglong Wang

    Postdoctoral Scholar, Radiation Biology

    BioDr. Wang was trained at the Jacques Monod Institute and École Normale Supérieure in Paris, France under the mentorship of Dr. Terence Strick. and obtained his Ph.D. degree from the University of Paris in 2019. He dissected the molecular machinery of human and bacterial NHEJ, and interrogated the mechanism of SpCas9 tolerance to non-specific substrate using single-molecule nanomanipulation tools.
    Jinglong’s research in the Frock Lab focuses on DSB-related chromosome topological changes and genomic interactions.

  • Marie Wang

    Marie Wang

    Clinical Professor, Pediatrics

    Current Research and Scholarly InterestsEvaluation and management of the febrile young infant and infections in hospitalized children; promotion of appropriate antibiotic use.

  • Nancy Ewen Wang

    Nancy Ewen Wang

    Professor of Emergency Medicine (Pediatrics), Emerita

    Current Research and Scholarly Interests- Disparities in Emergency Medical Services for children.
    - Efficacy of novel interventions for pediatric access to care.
    - Teaching and supporting community-initiated interventions and programs internationally.

  • Paul  J. Wang, MD

    Paul J. Wang, MD

    John R. and Ai Giak L. Singleton Director, Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsDr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang is committed to addressing disparities in care and is actively involved in increasing diversity in clinical trials.

  • Samantha Wang

    Samantha Wang

    Clinical Assistant Professor, Medicine

    BioSamantha Wang earned her Bachelors degree in Molecular & Cell Biology from the University of California, Berkeley, followed by MD and Masters in Health Science degrees from Yale University School of Medicine. After completing her internal medicine residency at Stanford, Dr. Wang served as Chief Resident for the Internal Medicine Residency and subsequently joined the Division of Hospital Medicine, where she now contributes her expertise in the care of acutely ill adult patients.

    Outside her clinical work, Dr. Wang is deeply committed to medical education, health equity, and patient-centered communication. She has been recognized for her exceptional teaching with the David A. Rytand Teaching Award, and subsequently completed a Rathmann Family Foundation Fellowship in Medical Education in Patient-Centered Care. With leadership roles in both undergraduate and graduate medical education programs, Dr. Wang is actively engaged and committed in shaping the future of health care professionals.

    Dr. Wang is deeply passionate about health equity and has spoken nationally on the topic of racial justice in clinical decision-making. She has received institutional and national funding to develop and study health equity curricula across the continuum of medical education, and is the course director for the "5-Minute Moment for Racial Justice", which advocates for justice, equity, diversity, and inclusion in medical decision making. As a member of the Stanford 25 Bedside Medicine and Presence Groups, she strives to create a more equitable and inclusive learning environment. In her research endeavors, Samantha employs a comprehensive approach, utilizing quantitative and qualitative methodologies, alongside participatory qualitative approaches with community partners. Her focus is on understanding how to effectively teach health equity in the clinical learning environment.

    Her quality improvement work is centered on improving communication skills around serious illness diagnoses, and she has trained students, residents, and other faculty members in these skills. Dr. Wang believes that the best doctors combine intellectual acumen with the ability to connect with patients on a personal level, bringing thoughtfulness, kindness, and authenticity to the bedside. In her care of complex patients with serious diagnoses, she consistently advocates for incorporating loved ones' and the patient's values into the care plan, ensuring a holistic and patient-centered approach.

  • Shan X. Wang

    Shan X. Wang

    Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsShan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.

  • Sui Wang, PhD

    Sui Wang, PhD

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsOur research focuses on unraveling the molecular mechanisms underlying retinal development and diseases. We employ genetic and genomic tools to explore how various retinal cell types, including neurons, glia, and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels. In addition, we investigate their interactions and collective contributions to maintain retinal integrity.

    1. Investigating retinal development:
    We utilize genetic tools and methods such as in vivo plasmid electroporation and CRISPR to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal development.

    2. Understanding diabetes-induced cell-type-specific responses in the retina:
    Diabetes triggers a range of multicellular responses in the retina, such as vascular lesions, glial dysfunction, and neurodegeneration, all of which contribute to retinopathy. We delve into the detailed molecular mechanisms underlying these diabetes-induced cell-type-specific responses and the pathogenesis of diabetic retinopathy.

    3. Developing molecular tools for labeling and manipulation of specific cell types in vivo:
    Cis-regulatory elements, particularly enhancers, play pivotal roles in directing tissue- and cell-type-specific expression. Our interest lies in identifying enhancers that can drive cell type-specific expression in the retina and brain. We incorporate these enhancers into plasmid or AAV-based delivery systems, enabling precise labeling and manipulation of specific cell types in vivo.