Stanford Doerr School of Sustainability
Showing 1-10 of 10 Results
-
Justine Dachille
Understand Energy Program Manager, Precourt Institute for Energy
Current Role at StanfordUnderstand Energy, Program Manager
-
David Danielson
Adjunct Professor
BioDavid T. Danielson became a Precourt energy scholar at Stanford in 2016. With Stuart Macmillan and Joel Moxley, Dave co-teaches the yearlong course "Energy Transformation Collaborative." This project-based course provides a launchpad for the creation and development of transformational energy ventures. Interdisciplinary student teams research, analyze and refine detailed plans for high-impact opportunities in the context of the new energy venture development framework offered in this course.
Since January 2017, Dave has been managing director of Breakthrough Energy Ventures, a $1 billion fund focused on fighting climate change by investing in clean energy innovation.
From 2012 to 2016, Dave was assistant secretary of the U.S. Department of Energy’s Office of Energy Efficiency & Renewable Energy. There, he directed the U.S. government’s innovation strategy in the areas of sustainable transportation, renewable power, energy efficiency and clean-energy manufacturing, investing about $2 billion annually into American clean-energy innovation. He is considered a global expert in the development of next generation clean-energy technologies and the creation of new R&D and organizational models for high-impact clean energy innovation.
Prior to being appointed by President Obama as assistant secretary, Dave was the first hire at DOE’s Advanced Research Projects Agency– Energy (ARPA-E), a funding agency that focuses on the development of high-risk, high-reward clean-energy technologies. Prior to his government service, he was a clean-energy venture capitalist and, as a PhD student at MIT, was the founder and president of the MIT Energy Club. -
Reinhold Dauskardt
Ruth G. and William K. Bowes Professor in the School of Engineering
BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.
-
Jeffrey Decker
Program Director, Precourt Institute for Energy
BioJeff Decker is managing director of the Technology Transition for Defense Program and co-instructor of Hacking for Defense course at Stanford University. Hacking for Defense uses the Lean Startup technique to tackle complex problems critical to the government around national security, energy networks, cyber security, and AI, and develop new technologies with teams of engineers, scientists, MBA’s and policy experts. With the program, Jeff has taught more than 300 students, faculty, and government personnel user-centered design from over 2 dozen colleges and universities, helping them solve more than 75 unique national security challenges for the Defense Department and related industries. Several student teams have gone on to form companies winning Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, gaining venture capital funding, and one team even became a program of record. Jeff’s work and research focuses generally on defense innovation and dual-use technologies, with a focus on developing go-to-defense market strategies for technology startups and fostering defense-industry partnerships. With his Lean Startup experience and expertise with Hacking for Defense, plus his military service, Jeff is a sought-after expert when it comes to national security and solving Defense Department challenges.
Jeff served in the U.S. Army as a 2nd Ranger Battalion light infantry squad leader in Iraq and Afghanistan. Following his service, he earned a MS in International Relations (Laws), and a doctorate in International Relations before conducting national security and international affairs research at the RAND Corporation. -
Thomas Devereaux
Professor of Photon Science, of Materials Science and Engineering and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsMy main research interests lie in the areas of theoretical condensed matter physics and computational physics. My research effort focuses on using the tools of computational physics to understand quantum materials. Fortunately, we are poised in an excellent position as the speed and cost of computers have allowed us to tackle heretofore unaddressed problems involving interacting systems. The goal of my research is to understand electron dynamics via a combination of analytical theory and numerical simulations to provide insight into materials of relevance to energy science. My group carries out numerical simulations on SIMES’ high-performance supercomputer and US and Canadian computational facilities. The specific focus of my group is the development of numerical methods and theories of photon-based spectroscopies of strongly correlated materials.
-
Noah Diffenbaugh
Kara J Foundation Professor and Kimmelman Family Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsDr. Noah S. Diffenbaugh is an Editor of the peer-review journal Geophysical Research Letters, and a Lead Author for the Intergovernmental Panel on Climate Change (IPCC). He is a recipient of the James R. Holton Award from the American Geophysical Union, a CAREER award from the National Science Foundation, and a Terman Fellowship from Stanford University. He has also been recognized as a Kavli Fellow by the U.S. National Academy of Sciences, and as a Google Science Communication Fellow.
-
Jennifer Dionne
Professor of Materials Science and Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
BioJennifer (Jen) Dionne is a Professor of Materials Science and Engineering and, by courtesy, of Radiology at Stanford. She is also a Chan Zuckerberg Biohub Investigator, deputy director of Q-NEXT (a DOE National Quantum Initiative), and co-founder of Pumpkinseed, a company developing quantum sensors to understand and optimize the immune system. From 2020-2023, Jen served as Stanford’s Inaugural Vice Provost of Shared Facilities, raising capital to modernize instrumentation, fund experiential education, foster staff development, and support new and existing users of the shared facilities. Jen received her B.S. degrees in Physics and Systems Science and Mathematics from Washington University in St. Louis, her Ph. D. in Applied Physics at the California Institute of Technology in 2009, and her postdoctoral training in Chemistry at Berkeley. As a pioneer of nanophotonics, she is passionate about developing methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her research has developed culture-free methods to detect pathogens and their antibiotic susceptibility; amplification-free methods to detect and sequence nucleic acids and proteins; and new methods to image light-driven chemical reactions with atomic-scale resolution. Jen’s work has been featured in NPR, the Economist, Science, and Nature, and recognized with the NSF Alan T. Waterman Award, a NIH Director’s New Innovator Award, a Moore Inventor Fellowship, and the Presidential Early Career Award for Scientists and Engineers. She was also featured on Oprah’s list of “50 Things that will make you say ‘Wow’!”. She also perceives outreach as a critical component of her role and frequently collaborates with visual and performing artists to convey the beauty of science to the broader public.
-
Louis Durlofsky
Otto N. Miller Professor in the School of Earth Sciences
Current Research and Scholarly InterestsGeneral reservoir simulation, optimization, reduced-order modeling, upscaling, flow in fractured systems, history matching, CO2 sequestration, energy systems optimization