Stanford University


Showing 11-20 of 357 Results

  • Erpeng Dai

    Erpeng Dai

    Instructor, Radiology

    BioDr. Erpeng Dai's research interest is focused on advanced neuro MRI technique development and application. Previously, he has developed a series of novel techniques for high-resolution and fast diffusion MRI (dMRI). Currently, he is mainly working on distortion-free dMRI, advanced diffusion encoding, and brain microstructure and connectivity studies.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Xianjin Dai, PhD, DABR

    Xianjin Dai, PhD, DABR

    Clinical Assistant Professor, Radiation Oncology - Radiation Physics

    Current Research and Scholarly InterestsAI in Medicine
    Medical Image Analysis
    Biomedical Physics
    Multimodal Imaging
    Ultrasound Imaging
    Medical Device
    Biomedical Optics (Optical, Photoacoustic, OCT)

  • Yuqin Dai

    Yuqin Dai

    Director of Metabolomics

    BioDr. Yuqin Dai is the Director of Metabolomics at Stanford ChEM-H. In this role, she collaborates with faculty in the development and execution of experiments aimed at measuring small molecule drug candidates, endogenous and exogenous metabolites in a variety of biomedical R&D contexts. In addition, she provides strategic vision, mentorship, and leadership in the development of new LC/MS analytical methodologies for metabolomics research, the Metabolomics Knowledge Center’s daily operation and growth.
    Dr. Dai came to ChEM-H with 20 years of research, marketing and managerial experiences across biotech/pharma and analytical instrument industries. Prior to joining ChEM-H in January of 2020, Dr. Dai worked at Agilent managing strategic collaborations with key opinion leaders in academia and industry for metabolomics research, driving new application marketing opportunities, and developing differential solutions to support new LC/MS and automation product introductions. Before Agilent, Dr. Dai led bioanalytical R&D teams and managed DMPK projects to support drug discovery and development programs at three biotech/pharm companies. She was also extensively involved in new technology assessment and implementation. Dr. Dai received her Ph.D. in analytical chemistry from the University of Alberta, Canada, where her research focused on the LC/MS and MALDI/MS instrumentation and method development for proteomics and small molecule applications.

  • Michael D. Dake

    Michael D. Dake

    Thelma and Henry Doelger Professor of Cardiovascular Surgery, Emeritus

    Current Research and Scholarly InterestsImproved endovascular procedures and devices to treat aortic lesions, peripheral arterial disease and venous abnormalities. Focused interest in drug-eluting stents and balloons, endovascular stent-grafts, including branched aortic devices and techniques for the endovascular management of aortic dissection. Current clinical research projects include drug-eluting stents for superficial femoral arterial disease and multiple device trials to evaluate stent-grafts for the treatment of aortic lesions.