Stanford University


Showing 521-530 of 829 Results

  • Julius Smith

    Julius Smith

    Professor of Music, Emeritus

    BioSmith is a professor emeritus of music and (by courtesy) electrical engineering (Information Systems Lab) based at the Center for Computer Research in Music and Acoustics (CCRMA). Teaching and research pertain to music and audio applications of signal processing. Former software engineer at NeXT Computer, Inc., responsible for signal processing software pertaining to music and audio. For more, see https://ccrma.stanford.edu/~jos/.

  • Kendric C. Smith

    Kendric C. Smith

    Professor of Radiation Oncology, Emeritus

    Current Research and Scholarly InterestsThe photochemistry and radiation chemistry of DNA, the genetic control and biochemical bases of the multiple pathways of DNA repair, and the roles of DNA repair processes in radiation and spontaneous mutagenesis. Over 190 papers have been published on these and related topics.

  • Mark Smith

    Mark Smith

    Head of Medicinal Chemistry

    BioDr. Mark Smith joined Stanford ChEM-H in May 2013 as the Head of the Medicinal Chemistry Knowledge Center. He graduated with a Ph.D. from the laboratory of Prof. Richard Stoodley at the University of Manchester Institute for Science and Technology (UMIST), where his research focused on the application of Lewis acid catalyzed hetero Diels-Alder reactions to the synthesis of novel disaccharide structures. In 2000, Dr. Smith joined the research laboratory of Prof. David Crich at the University of Illinois at Chicago. Here his research focused on the generation of new reagents for the synthesis of beta-mannosides from thioglycosides. From 2002 to 2013, Dr. Smith worked as a medicinal chemist in Roche’s research facilities both in Palo Alto, CA and then Nutley, NJ, where he specialized in antiviral research.

  • Matthew Smith

    Matthew Smith

    Professor of German Studies and of Theater and Performance Studies

    BioMatthew Wilson Smith’s interests include modern theatre and relations between science, technology, and the arts. His book The Nervous Stage: 19th-century Neuroscience and the Birth of Modern Theatre (Oxford, 2017) explores historical intersections between theatre and neurology and traces the construction of a “neural subject” over the course of the nineteenth century. It was a finalist for the George Freedley Memorial Award of the Theater Library Association. His previous book, The Total Work of Art: From Bayreuth to Cyberspace (Routledge, 2007), presents a history and theory of attempts to unify the arts; the book places such diverse figures as Wagner, Moholy-Nagy, Brecht, Riefenstahl, Disney, Warhol, and contemporary cyber-artists within a coherent genealogy of multimedia performance. He is the editor of Georg Büchner: The Major Works, which appeared as a Norton Critical Edition in 2011, and the co-editor of Modernism and Opera (Johns Hopkins, 2016), which was shortlisted for an MSA Book Prize. His essays on theater, opera, film, and virtual reality have appeared widely, and his work as a playwright has appeared at the Eugene O’Neill Musical Theater Conference, Richard Foreman’s Ontological-Hysteric Theater, and other stages. He previously held professorships at Cornell University and Boston University as well as visiting positions at Columbia University and Johannes Gutenberg-Universität (Mainz).

  • Melody Smith, MD, MS

    Melody Smith, MD, MS

    Assistant Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)

    BioDr. Smith is a board-certified, fellowship-trained medical oncologist and hematologist. She is an assistant professor in the Department of Medicine in the Division of Blood & Marrow Transplantation and Cellular Therapy.

    She is also a physician-scientist who conducts extensive research. As a medical student, she completed a fellowship at the National Institutes of Health (NIH) in the Clinical Research Training (now, the Medical Research Scholars) Program. Subsequently, following her clinical fellowship, she was a post-doctoral researcher at Memorial Sloan Kettering Cancer Center. The research in her lab focuses on investigations of the biology of chimeric antigen receptor (CAR) T cells to improve the efficacy and safety of this therapy (1) by investigating donor (Nature Medicine, 2017) and off-the-shelf CAR T cells in mouse models and (2) by assessing mechanisms for the impact of the intestinal microbiome on CAR T cell response (Nature Medicine, 2022).

    Dr. Smith presents the findings of her research at regional, national, and international conferences. Further, she has co-authored articles on topics within the field of cancer immunology, including cancer immunotherapy, stem cell transplantation, and CAR T cell therapy. Her work has appeared in journals, among others Nature, Nature Immunology, Nature Medicine, Blood, and Transplantation and Cellular Therapy. She serves a peer reviewer for publications in journals, such as NEJM Evidence, Science Advances, Blood, Cancer Cell, and Molecular Therapy. She also has contributed to chapters in books, including Pocket Oncology, Current Concepts and Controversies in Hematopoietic Cell Transplantation, and Advanced Concepts in Human Immunology: Prospects for Disease Control.

    She has earned numerous honors; the American Society of Hematology (ASH), the Society for Immunotherapy of Cancer, the European Society for Blood and Marrow Transplantation, and several other professional organizations have recognized her achievements as a clinician, researcher, and scholar.

    Dr. Smith is a member of the ASH Committee on Emerging Gene and Cell Therapies and the ASH Committee on Diversity, Equity & Inclusion. Additionally, she serves on committees within the institution and professional organizations focused on promoting diversity among hematology and cell therapy specialists.

  • Robert Lane Smith

    Robert Lane Smith

    Professor (Research) of Orthopedic Surgery, Emeritus

    Current Research and Scholarly InterestsOur group is interested in the molecular and cell biology underlying bone and cartilage metabolism in health and disease. Normal daily activities are linked to the ability of the articular cartilage to withstand normal joint forces that may reach 5-7 times body weight and bone homeostasis depends on daily mechanical loading histories.