Stanford University


Showing 51-100 of 134 Results

  • Tony Heinz

    Tony Heinz

    Professor of Applied Physics, of Photon Science, and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsElectronic properties and dynamics of nanoscale materials, ultrafast lasers and spectroscopy.

  • Jeremy J. Heit, MD, PhD

    Jeremy J. Heit, MD, PhD

    Associate Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsOur research seeks to advance our understanding of cerebrovascular disease and to develop new minimally invasive treatments for these diseases. We study ischemic and hemorrhagic stroke, cerebral aneurysms, delayed cerebral ischemia, cerebral arteriovenous malformations (AVMs), dural arteriovenous fistulae, and other vascular diseases of the brain. We use state-of-the-art neuroimaging techniques to non-invasively study these diseases, and we are developing future endovascular technologies to advance neurointerventional surgery.

    www.heitlab.com

  • H. Craig Heller

    H. Craig Heller

    Lorry I. Lokey/Business Wire Professor

    Current Research and Scholarly InterestsNeurobiology of sleep, circadian rhythms, regulation of body temperature, mammalian hibernation, and human exercise physiology. Currently applying background in sleep and circadian neurobiology the understanding and correcting the learning disability of Down Syndrome.

  • Stefan Heller

    Stefan Heller

    Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    Current Research and Scholarly InterestsOur research focuses on the inner ear, from its earliest manifestation as one of the cranial placodes until it has developed into a mature and functioning organ. We are interested in how the sensory epithelia of the inner ear that harbor the sensory hair cells develop, how the cells mature, and how these epithelia respond to toxic insults. The overarching goal of this research is to find ways to regenerate lost sensory hair cells in mammals.

  • Jill Helms

    Jill Helms

    Professor of Surgery (Plastic & Reconstructive Surgery)

    Current Research and Scholarly InterestsDr. Helms' research interests center around regenerative medicine and craniofacial development.

  • Nofar Mintz Hemed

    Nofar Mintz Hemed

    Physical Science Research Scientist

    BioNofar Hemed received her Ph.D. from Tel-Aviv University (Israel) in 2017 for her work on the performance and reliability of Si nanowire-forest structure for biosensor applications. She joined Stanford on September 2017 as a recipient of the prestigious "The Eric and Wendy Schmidt Postdoctoral Award", and she is currently working on multi-array for electrochemical brain mapping.

  • Jaimie Henderson, MD

    Jaimie Henderson, MD

    John and Jene Blume - Robert and Ruth Halperin Professor, Professor of Neurosurgery and, by courtesy, of Neurology

    Current Research and Scholarly InterestsMy research interests encompass several areas of stereotactic and functional neurosurgery, including frameless stereotactic approaches for therapy delivery to deep brain nuclei; cortical physiology and its relationship to normal and pathological movement; brain-computer interfaces; and the development of novel neuromodulatory techniques for the treatment of movement disorders, epilepsy, pain, and other neurological diseases.

  • Victor W. Henderson, MD, MS

    Victor W. Henderson, MD, MS

    Professor of Epidemiology and Population Health and of Neurology

    Current Research and Scholarly InterestsResearch interests:
    (1) Risk factors for age-associated cognitive decline and for dementia.
    (2) Therapeutic strategies to improve cognitive abilities in aging and in dementia.
    (3) Brain–behavior relations as they pertain to human cognition.

  • Rod Hentz

    Rod Hentz

    Professor of Surgery, Emeritus

    Current Research and Scholarly Interests1. Nerve regeneration and repair, evaluation of repair methods, modalities to enhance peripheral nerve regeneration, development of improved methods to analyze nerve regeneration.

    2. Implementation of functional neuromuscular stimulation to paralytic deformities.

    3. Computer modeling of upper limb function.

  • Tina Hernandez-Boussard

    Tina Hernandez-Boussard

    Professor of Medicine (Biomedical Informatics), of Biomedical Data Science, of Surgery and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly InterestsMy background and expertise is in the field of computational biology, with concentration in health services research. A key focus of my research is to apply novel methods and tools to large clinical datasets for hypothesis generation, comparative effectiveness research, and the evaluation of quality healthcare delivery. My research involves managing and manipulating big data, which range from administrative claims data to electronic health records, and applying novel biostatistical techniques to innovatively assess clinical and policy related research questions at the population level. This research enables us to create formal, statistically rigid, evaluations of healthcare data using unique combinations of large datasets.

  • Rogelio A. Hernández-López

    Rogelio A. Hernández-López

    Assistant Professor of Bioengineering and of Genetics

    Current Research and Scholarly InterestsOur group works at the interface of mechanistic, synthetic, and systems biology to understand and program cellular recognition, communication, and organization. We are currently interested in engineering biomedical relevant cellular behaviors for cancer immunotherapy.

  • Sven Herrmann

    Sven Herrmann

    Physical Science Research Scientist, KIPAC

    Current Research and Scholarly InterestsReadout architectures and electronics for imaging detectors

  • Daniel Herschlag

    Daniel Herschlag

    Professor of Biochemistry and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsOur research is aimed at understanding the chemical and physical behavior underlying biological macromolecules and systems, as these behaviors define the capabilities and limitations of biology. Toward this end we study folding and catalysis by RNA, as well as catalysis by protein enzymes.

  • Shea Hess Webber

    Shea Hess Webber

    Physical Science Research Scientist

    Bio***EDUCATION:***
    Dr. Hess Webber received a BS in Physics from Gettysburg College in 2009. She subsequently joined the Computational Data Sciences PhD program (formerly, Computational Science and Informatics) at George Mason University, with a specialty in Astrophysics and Space Sciences. Her PhD thesis work was entitled "Solar f-mode Wave Scattering Off Linear Source Boundaries" and she successfully completed her PhD in late 2016 (also earning an MS along the way -- 2012).

    ***EXPERIENCE:***
    Dr. Hess Webber began her career in solar physics research in 2005, as a summer intern in the Solar Physics Division at NASA's Goddard Space Flight Center. She continued collaborating with scientists at Goddard through undergrad, mainly working in solar coronal hole studies using SOHO/EIT data but also collaborating briefly on solar flare studies with the RHESSI team. She began working at GSFC full-time as a graduate research assistant in 2009. Her initial GRA work continued the ongoing coronal hole detection research, extending the data set with SDO/AIA images and improving the detection technique. The core of Dr. Hess Webber's dissertation considered coronal holes using helioseismology, investigating how surface waves on the Sun are influenced when passing through a coronal hole and whether wave perturbations can be used to isolate coronal hole boundaries. In doing so, she developed a new geometry-dependent helioseismic technique and showed that the geometry of a "scattering feature" is non-negligible in helioseismology studies. After defending her PhD, Dr. Hess Webber continued as a contracted postdoctoral researcher at GSFC for a year, collaborating on CME-tracking methods. In early 2018, she began as a postdoctoral scholar at Stanford University in the W. W. Hansen Experimental Physics Lab's solar physics group. Currently, Dr. Hess Webber is continuing as research staff with the HEPL solar physics team, where her main research projects include helioseismic studies, and machine-learning applied to solar magnetism to enable improved coronal/solar-wind models for space-weather forecasting.

    ***LEADERSHIP:***
    Dr. Hess Webber is currently an elected member of the AAS Solar Physics Division Committee. She is also a co-lead of the COFFIES Center Effectiveness Team.

    ***BROADER IMPACTS***
    Dr. Hess Webber also has extensive experience with Education and Public Outreach in solar physics, and some experience with science policy. She is currently on the KIPAC Equity & Inclusion Task Forces for 1) Mental Health and 2) Mentoring. She also actively participates in the COFFIES DEIA and Beans initiatives, as well as organizes the Stanford Solar Physics Summer Student program.

  • Lambertus Hesselink

    Lambertus Hesselink

    Professor of Electrical Engineering and, by courtesy of Applied Physics

    BioHesselink's research encompasses nano-photonics, ultra high density optical data storage, nonlinear optics, optical super-resolution, materials science, three-dimensional image processing and graphics, and Internet technologies.

  • Shaul Hestrin, PhD

    Shaul Hestrin, PhD

    Professor of Comparative Medicine

    Current Research and Scholarly InterestsThe main interest of my lab is to understand how the properties of neocortical neurons, the circuits they form and the inputs they receive give rise to neuronal activity and behavior. Our approach includes behavioral studies, two-photon calcium imaging, in vivo whole cell recording in behaving animals and optogenetic methods to activate or to silence the activity of cortical neurons.

  • Jennifer Hicks

    Jennifer Hicks

    Executive Director, Wu Tsai Human Performance Alliance

    Current Role at StanfordExecutive Director, Wu Tsai Human Performance Alliance at Stanford
    Director of Research, Mobilize Center
    Director of Research, Restore Center
    Director Research and Development, OpenSim Project

  • Brian Hie

    Brian Hie

    Assistant Professor of Chemical Engineering

    BioI am an Assistant Professor of Chemical Engineering and Data Science at Stanford University, and an Innovation Investigator at Arc Institute. I supervise the Laboratory of Evolutionary Design, where we conduct research at the intersection of biology and machine learning.

    I was previously a Stanford Science Fellow in the Stanford University School of Medicine and a Visiting Researcher at Meta AI. I completed my Ph.D. at MIT CSAIL and was an undergraduate at Stanford University. I have also previously worked at Google X, Illumina, and Salesforce.

  • William Hiesinger, MD

    William Hiesinger, MD

    Associate Professor of Cardiothoracic Surgery (Adult Cardiac Surgery)

    BioDr. Hiesinger is a board-certified, fellowship-trained specialist in adult cardiac surgery. He is also an associate professor in the Department of Cardiothoracic Surgery at Stanford University School of Medicine.

    Dr. Hiesinger’s clinical focus encompasses the full spectrum of cardiothoracic conditions and treatment approaches, such as heart transplantation, mitral and aortic valve repair, surgical treatment for hypertrophic cardiomyopathy, coronary artery bypass, and complex thoracic aortic procedures. He serves as Surgical Director of the Stanford Mechanical Circulatory Support Program, where he leads and directs the surgical implantation of ventricular assist devices (VADs) in patients with end-stage heart failure.

    The National Institutes of Health and the Thoracic Surgery Foundation have awarded funds to support Dr. Hiesinger’s research. In the Stanford Cardiothoracic Therapeutics and Surgery Laboratory, Dr. Hiesinger's research spans the disciplines of computer science and cardiovascular biology, and he endeavors to build novel foundational deep learning systems designed to better represent and process high-dimensional inputs and apply these systems towards clinical problems. Additionally, his lab investigates bioengineered devices, tissue engineering, and angiogenic cytokine therapy for the treatment of heart failure.

    He has published extensively and his work has appeared in Nature Communications, Nature Machine Intelligence, the Journal of Heart and Lung Transplantation, Circulation Heart Failure, the Journal of Thoracic and Cardiovascular Surgery, Journal of Vascular Surgery, and elsewhere.

    He teaches courses on cardiothoracic surgery skills. He also advises surgeons of the future.

    Dr. Hiesinger has won awards for his research and scholarship, including the Surgical Resident of the Year Award, Jonathan E. Rhoads Research Award, Clyde F. Baker Research Prize, and I.S. Ravdin Prize, all from his alma mater, the University of Pennsylvania. He was a finalist for the Vivien Thomas Young Investigator Award from the American Heart Association.

    Dr. Hiesinger is a member of the American Association For Thoracic Surgery and serves on the Cardiac Surgery Biology Club. He is also a member of the Society of Thoracic Surgeons and serves on the Workforce on Surgical Treatment of End-Stage Cardiopulmonary Disease national committee as well as the American Heart Association Council for Cardiothoracic and Vascular Surgery.

  • John Higgins

    John Higgins

    Professor of Pathology

    Current Research and Scholarly InterestsI work as a diagnostic surgical pathologist doing translational research in renal neoplasia and medical renal disease and neoplastic and medical liver disease. Subspecialty areas of clinical interest include diagnostic immunohistochemistry, renal, hepatic and transplant pathology.

  • Lynn Hildemann

    Lynn Hildemann

    Senior Associate Dean for Education and Professor of Civil and Environmental Engineering

    BioLynn Hildemann's current research areas include the sources and dispersion of airborne particulate matter indoors, and assessment of human exposure to air pollutants.

    Prof. Hildemann received BS, MS, and PhD degrees in environmental engineering science from the California Institute of Technology. She is an author on >100 peer-reviewed publications, including two with over 1000 citations each, and another 6 with over 500 citations each. She has been honored with Young Investigator Awards from NSF and ONR, the Kenneth T. Whitby Award from the AAAR (1998), and Stanford's Gores Award for Teaching Excellence (2013); she also was a co-recipient of Atmospheric Environment’s Haagen-Smit Outstanding Paper Award (2001).

    She has served on advisory committees for the Bay Area Air Quality Management District and for the California Air Resources Board. She has been an Associate Editor for Environmental Science & Technology, and Aerosol Science and Technology, and has served on the advisory board for the journal Environmental Science & Technology.

    At Stanford, Prof. Hildemann has been chair of the Department of Civil & Environmental Engineering, and served as an elected member of the Faculty Senate. She has chaired the School of Engineering Library Committee, the University Committee on Judicial Affairs, and the University Breadth Governance Board.

  • Pamela Hinds

    Pamela Hinds

    Rodney H. Adams Professor in the School of Engineering, Fortinet Founders Chair of the Department of Management Science and Engineering and Professor of Management Science and Engineering

    BioPamela J. Hinds is Fortinet Founders Chair and Professor of Management Science & Engineering, Co-Director of the Center on Work, Technology, and Organization and on the Director's Council for the Hasso Plattner Institute of Design. She studies the effect of technology on teams, collaboration, and innovation. Pamela has conducted extensive research on the dynamics of cross-boundary work teams, particularly those spanning national borders. She explores issues of culture, language, identity, conflict, and the role of site visits in promoting knowledge sharing and collaboration. She has published extensively on the relationship between national culture and work practices, particularly exploring how work practices or technologies created in one location are understood and employed at distant sites. Pamela also has a body of research on human-robot interaction in the work environment and the dynamics of human-robot teams. Most recently, Pamela has been looking at the changing nature of work in the face of emerging technologies, including the nature of coordination in open innovation, changes in work and organizing resulting from 3D-printing, and the work of data analysts. Her research has appeared in journals such as Organization Science, Research in Organizational Behavior, Academy of Management Journal, Academy of Management Annals, Academy of Management Discoveries, Human-Computer Interaction, Journal of Applied Psychology, Journal of Experimental Psychology: Applied, and Organizational Behavior and Human Decision Processes. Pamela is a Senior Editor of Organization Science. She is also co-editor with Sara Kiesler of the book Distributed Work (MIT Press). Pamela holds a Ph.D. in Organizational Science and Management from Carnegie Mellon University.

  • Karen G. Hirsch, MD

    Karen G. Hirsch, MD

    Associate Professor of Neurology (Adult Neurology)

    Current Research and Scholarly InterestsDr. Karen G. Hirsch cares for critically ill patients with neurologic disorders in the intensive care unit. Dr. Hirsch's research focuses on using continuous and discrete multi-modal data to develop phenotypes and identify signatures of treatment responsiveness in patients with coma after cardiac arrest. She is the Co-PI of PRECICECAP (PRecision Care In Cardiac ArrEst - ICECAP, NINDS R01 NS119825-01) and works closely with collaborators in data science at Stanford and with industry partners to apply machine learning analyses to the complex multi-modal ICU data. Dr. Hirsch also studies neuro-imaging in post-cardiac arrest coma and traumatic brain injury.

    Additional research interests include a broad array of topics and Dr. Hirsch greatly appreciates the importance of team science and collaboration. Along with colleagues in Biomedical Ethics, Dr. Hirsch studies brain death and organ donation with a focus on ethical challenges and prediction models. Along with colleagues in Cardiac Anesthesia and Cardiothoracic Surgery, Dr. Hirsch studies neurologic outcomes in patients on mechanical circulatory support including ECMO.

    Dr. Hirsch is broadly interested in improving neurologic outcomes after acute brain injury and identifying early phenotypes to guide precision medicine in neurocritical care, especially in patients with post-cardiac arrest brain injury.

  • Daniel Ho

    Daniel Ho

    William Benjamin Scott & Luna M. Scott Professor of Law, Professor of Political Science, Senior Fellow at the Stanford Institute for Economic Policy Research, at the Stanford Institute for HAI and Professor, by courtesy, of Computer Science

    BioDaniel E. Ho is the William Benjamin Scott and Luna M. Scott Professor of Law, Professor of Political Science, Professor of Computer Science (by courtesy), Senior Fellow at Stanford's Institute for Human-Centered Artificial Intelligence, and Senior Fellow at the Stanford Institute for Economic Policy Research at Stanford University. He is a Faculty Fellow at the Center for Advanced Study in the Behavioral Sciences and is Director of the Regulation, Evaluation, and Governance Lab (RegLab). Ho serves on the National Artificial Intelligence Advisory Commission (NAIAC), advising the White House on artificial intelligence, as Senior Advisor on Responsible AI at the U.S. Department of Labor, and as a Public Member of the Administrative Conference of the United States (ACUS). He received his J.D. from Yale Law School and Ph.D. from Harvard University and clerked for Judge Stephen F. Williams on the U.S. Court of Appeals, District of Columbia Circuit.

  • Keith Hodgson

    Keith Hodgson

    David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science at SLAC

    BioCombining inorganic, biophysical and structural chemistry, Professor Keith Hodgson investigates how structure at molecular and macromolecular levels relates to function. Studies in the Hodgson lab have pioneered the use of synchrotron x-radiation to probe the electronic and structural environment of biomolecules. Recent efforts focus on the applications of x-ray diffraction, scattering and absorption spectroscopy to examine metalloproteins that are important in Earth’s biosphere, such as those that convert nitrogen to ammonia or methane to methanol.

    Keith O. Hodgson was born in Virginia in 1947. He studied chemistry at the University of Virginia (B.S. 1969) and University of California, Berkeley (Ph.D. 1972), with a postdoctoral year at the ETH in Zurich. He joined the Stanford Chemistry Department faculty in 1973, starting up a program of fundamental research into the use of x-rays to study chemical and biological structure that made use of the unique capabilities of the Stanford Synchrotron Radiation Lightsource (SSRL). His lab carried out pioneering x-ray absorption and x-ray crystallographic studies of proteins, laying the foundation for a new field now in broad use worldwide. In the early eighties, he began development of one of the world's first synchrotron-based structural molecular biology research and user programs, centered at SSRL. He served as SSRL Director from 1998 to 2005, and SLAC National Accelerator Laboratory (SLAC) Deputy Director (2005-2007) and Associate Laboratory Director for Photon Science (2007-2011).

    Today the Hodgson research group investigates how molecular structure at different organizational levels relates to biological and chemical function, using a variety of x-ray absorption, diffraction and scattering techniques. Typical of these molecular structural studies are investigations of metal ions as active sites of biomolecules. His research group develops and utilizes techniques such as x-ray absorption and emission spectroscopy (XAS and XES) to study the electronic and metrical details of a given metal ion in the biomolecule under a variety of natural conditions.

    A major area of focus over many years, the active site of the enzyme nitrogenase is responsible for conversion of atmospheric di-nitrogen to ammonia. Using XAS studies at the S, Fe and Mo edge, the Hodgson group has worked to understand the electronic structure as a function of redox in this cluster. They have developed new methods to study long distances in the cluster within and outside the protein. Studies are ongoing to learn how this cluster functions during catalysis and interacts with substrates and inhibitors. Other components of the protein are also under active study.

    Additional projects include the study of iron in dioxygen activation and oxidation within the binuclear iron-containing enzyme methane monooxygenase and in cytochrome oxidase. Lab members are also investigating the role of copper in electron transport and in dioxygen activation. Other studies include the electronic structure of iron-sulfur clusters in models and enzymes.

    The research group is also focusing on using the next generation of x-ray light sources, the free electron laser. Such a light source, called the LCLS, is also located at SLAC. They are also developing new approaches using x-ray free electron laser radiation to image noncrystalline biomolecules and study chemical reactivity on ultrafast time scales.

  • Andrew R. Hoffman

    Andrew R. Hoffman

    Professor of Medicine (Endocrinology)

    Current Research and Scholarly InterestsMechanism of genomic imprinting of insulin like growth factor-2 and other genes.Long range chromatin interactions Role of histone modifications and DNA methylation in gene expression.

  • Marie Hollenhorst, MD, PhD

    Marie Hollenhorst, MD, PhD

    Basic Life Research Scientist, Sarafan ChEM-H

    BioDr. Hollenhorst is a physician and scientist with expertise in non-malignant hematology, transfusion medicine, and chemical biology. Dr. Hollenhorst values the one-on-one relationships that she forms with her patients, and strives to deliver the highest quality of care for individuals with blood diseases. Her experience caring for patients drives her to ask scientific questions in the laboratory, where she aims to bring a chemical approach to the study of non-malignant blood disease.

    Dr. Hollenhorst pursued combined MD and PhD training at Harvard University, where she received a PhD in Chemical Biology under the mentorship of Professor Christopher T Walsh. She subsequently completed a residency in Internal Medicine at Brigham and Women's Hospital, a fellowship in Transfusion Medicine at Harvard Medical School, and a fellowship in Hematology at Stanford.

    Dr. Hollenhorst has an interest in the biology of platelets, which are cellular fragments that help the blood to maintain a healthy balance between bleeding and clotting. Working in the laboratory of Professor Carolyn Bertozzi of Stanford Chemistry, Dr. Hollenhorst is studying sugar molecules found on the surface of platelets that are important in controlling their function and lifespan.

    Dr. Hollenhorst's research is supported by an NIH K99 Career Pathway to Independence in Blood Science Award for Physician-Scientists, a Stanford Chemistry, Engineering & Medicine for Human Health Physician-Scientist Fellowship, and a National Blood Foundation Early-Career Scientific Research Grant.

  • Susan Holmes

    Susan Holmes

    Professor of Statistics

    Current Research and Scholarly InterestsOur lab has been developing tools for the analyses of complex data structures, extending work on multivariate data to structured multitable table that include graphs, networks and trees as well as categorical and continuous measurements.
    We created and support the Bioconductor package phyloseq for the analyses of microbial ecology data from the microbiome. We have specialized in developing interactive graphical visualization tools for doing reproducible research in biology.

  • Mark Holodniy

    Mark Holodniy

    Professor of Medicine (Infectious Diseases)

    Current Research and Scholarly InterestsMy research program is currently focused in three areas: 1) Translational research (viral evolution and antiviral resistance prevalence and development), 2) Clinical trials (diagnostic assay/medical device, antimicrobials and immunomodulators), and 3) Health services research focusing on public health, infectious diseases and clinical outcomes.

  • David S. Hong

    David S. Hong

    Associate Professor of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Science Research)

    Current Research and Scholarly InterestsDr. Hong is a child and adolescent psychiatrist and clinician-scientist. His responsibilities span clinical care, teaching/mentorship, and research, with a unifying theme of advancing a developmental cognitive framework as applied to psychiatric conditions. Using this core premise, he work encompasses multiple domains: specialized clinical care, fellowship training, research mentorship, and elaborating the role of sex-specific determinants of development, one of the greatest contributors to individual developmental variation.

    His lab investigates genetic and hormonal influences underlying sex differences in child psychiatric conditions. Sex has emerged as a critical variable driving differences in the phenomenology, course, and treatment of many mental health disorders. Unfortunately, an understanding of the biological mechanisms driving these effects are limited. By applying innovative neuroimaging and multiomic approaches, Dr. Hong seeks to provide a deeper understanding of the connection between sex-specific effects and complex psychiatric diseases. To do so, research in the Hong Lab focuses on the role of genes on the X and Y chromosomes, as well as circulating sex hormones on brain development, cognition, and behavior. The lab broadly aims to elucidate the changing nature of these mechanisms across various stages of development.

    Another area of focus is the implementation of clinical informatics in child psychiatry and the development of digital mental health tools. As co-Director of the Mental Health Technology and Innovation Hub, Dr. Hong is helping to develop clinical and research infrastructure within the Department of Psychiatry and Behavioral Sciences to advance development of mobile mental health resources that will improve efficacy and access to mental health care.

  • Guosong Hong

    Guosong Hong

    Assistant Professor of Materials Science and Engineering

    BioGuosong Hong's research aims to bridge materials science and neuroscience, and blur the distinction between the living and non-living worlds by developing novel neuroengineering tools to interrogate and manipulate the brain. Specifically, the Hong lab is currently developing ultrasound, infrared, and radiofrequency-based in-vivo neural interfaces with minimal invasiveness, high spatiotemporal resolution, and cell-type specificity.

    Dr. Guosong Hong received his PhD in chemistry from Stanford University in 2014, and then carried out postdoctoral studies with at Harvard University. Dr. Hong joined Stanford Materials Science and Engineering and Neurosciences Institute as an assistant professor in 2018. He is a recipient of the NIH Pathway to Independence (K99/R00) Award, the MIT Technology Review ‘35 Innovators Under 35’ Award, the Science PINS Prize for Neuromodulation, the NSF CAREER Award, the Walter J. Gores Award for Excellence in Teaching, and the Rita Allen Foundation Scholars Award.

  • Yusuke Hori, MD

    Yusuke Hori, MD

    Clinical Instructor, Neurosurgery

    BioDr. Hori received his MD from Sapporo Medical University, Japan, and during that time he served as a Medical Student Research Fellow in the Department of Pharmacology. He explored the functional role of the SIRT1 gene, a longevity-associated gene, and its association with various conditions such as muscular dystrophy. He also completed a Visiting Student Research Fellowship at the Health Sciences University of Hokkaido and participated in Human Genetics projects focusing on an association between the 27-bp deletion and 538G>A mutation in the ABCC11 Gene.

    After graduating from medical school, Dr. Hori completed a neurosurgery residency at National Hospital Organization Okayama Medical Center in Japan. Subsequently, he completed a Stereotactic and Functional Neurosurgery Fellowship and then a Neurosurgical Oncology and Radiosurgery Fellowship at The Cleveland Clinic. He also completed an International Neurosurgery Fellowship at Boston Children's Hospital, Harvard Medical School. In 2022, he moved to Stanford University as a postdoctoral fellow, and under the supervision of Dr. Anca Pasca, he participated in brain organoid research focusing on hypoxic brain injuries.

    Since July 2023, Dr. Hori has been working as a Clinical Instructor (Neurosurgical Oncology and Radiosurgery) in the Department of Neurosurgery at Stanford under the supervision of Dr. Steven D. Chang. His clinical interests include malignant brain and spine tumors in both adult and pediatric patients. His clinical research focuses on the application of minimally invasive treatments such as laser interstitial thermal therapy, focused ultrasound, and radiosurgery to treat various neurosurgical conditions. His current lab research aims to develop an organoid model for radiation-induced brain injuries and a high-throughput screening platform to identify novel therapeutic compounds, for which he received a Clinician Educator Grant from Stanford University Maternal and Child Health Research Institute. Outside of medicine, he enjoys playing music including guitar and drums.

  • Mark Horowitz

    Mark Horowitz

    Fortinet Founders Chair of the Department of Electrical Engineering , Yahoo! Founders Professor in the School of Engineering and Professor of Computer Science

    BioProfessor Horowitz initially focused on designing high-performance digital systems by combining work in computer-aided design tools, circuit design, and system architecture. During this time, he built a number of early RISC microprocessors, and contributed to the design of early distributed shared memory multiprocessors. In 1990, Dr. Horowitz took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth memory interface technology. After returning in 1991, his research group pioneered many innovations in high-speed link design, and many of today’s high speed link designs are designed by his former students or colleagues from Rambus.

    In the 2000s he started a long collaboration with Prof. Levoy on computational photography, which included work that led to the Lytro camera, whose photographs could be refocused after they were captured.. Dr. Horowitz's current research interests are quite broad and span using EE and CS analysis methods to problems in neuro and molecular biology to creating new agile design methodologies for analog and digital VLSI circuits. He remains interested in learning new things, and building interdisciplinary teams.