Stanford University
Showing 231-240 of 241 Results
-
Trisha Suppes, MD, PhD
Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)
Current Research and Scholarly InterestsLong-term treatment strategies for bipolar disorder, treatment for bipolar II disorder, use of treatment algorithms, and treatment of major depression.
-
Vidyani Suryadevara
Instructor, Genetics
Current Research and Scholarly InterestsA Bioengineer by training, she has a breadth of experiences across different scientific disciplines including pulmonary diseases, Alzheimer’s disease, and musculoskeletal disorders, wherein her research projects involved unraveling signaling mechanism behind the disease in order to identify new therapeutic targets and developing imaging modalities for early diagnosis of the disease, thus eventually improving the quality of life in patients. Her current work has been centered around age-associated pathophysiologies like osteoarthritis and Alzheimer's Disease. Her research currently focuses on the clinical translation of a novel noninvasive multimodality imaging approach to detect senescence in osteoarthritis and Alzheimer's Disease and understand the senescence biology in these age-associated diseases.
She has led teams of renowned senescence scientists across the US to develop expert recommendations for biomarkers for senescence. She is also a faculty fellow in the Center for Innovation at Global Health, wherein her focus is to develop region-specific lifestyle interventions to prevent dementia. -
Yuri Suzuki
Stanley G. Wojcicki Professor, Professor of Applied Physics, and by courtesy, of Materials Science and Engineering
Current Research and Scholarly InterestsHer interests are focused on novel ground states and functional properties in condensed matter systems synthesized via atomically precise thin film deposition techniques with a recent emphasis has been on highly correlated electronic systems:
• Emergent interfacial electronic & magnetic phenomena through complex oxide heteroepitaxy
• Low dimensional electron gas systems
• Spin current generation, propagation and control in complex oxide-based ferromagnets
• Multifunctional behavior in complex oxide thin films and heterostructures -
Katrin J Svensson
Associate Professor of Pathology
Current Research and Scholarly InterestsMolecular metabolism
Protein biochemistry
Cell biology and function
Animal physiology -
James Swartz
James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering
Current Research and Scholarly InterestsProgram Overview
The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances. -
Julie K. Sydor
HIT Fund Innovation Strategy Manager, Office of Technology Licensing (OTL)
Current Role at StanfordHIT Fund Innovation Strategy Manager
-
Karl G. Sylvester
Professor of Surgery (Pediatric Surgery)
Current Research and Scholarly InterestsScholarly interests include investigation of molecular markers of human disease that provide diagnostic function, serve as targets for possible therapeutic manipulation, or provide insight into mechanisms of human disease. Specific diseases of interest include common conditions of pregnancy, gut microbial ecology and Necrotizing Enterocolitis (NEC).