Stanford University


Showing 541-560 of 630 Results

  • Daniel Spielman

    Daniel Spielman

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering
    On Partial Leave from 05/15/2024 To 08/14/2024

    Current Research and Scholarly InterestsMy research interests are in the field of medical imaging, particularly magnetic resonance imaging and in vivo spectroscopy. Current projects include MRI and MRS at high magnetic fields and metabolic imaging using hyperpolarized 13C-labeled MRS.

  • James Spudich

    James Spudich

    Douglass M. and Nola Leishman Professor of Cardiovascular Disease, Emeritus

    Current Research and Scholarly InterestsThe general research interest of this laboratory is the molecular basis of cell motility, with a current emphasis on power output by the human heart. We have three specific research interests, the molecular basis of energy transduction that leads to ATP-driven myosin movement on actin, the biochemical basis of the regulation of actin and myosin interaction and their assembly states, and the roles these proteins play in vivo, in cell movement, changes in cell shape and muscle contraction.

  • Sandy Srinivas

    Sandy Srinivas

    Professor of Medicine (Oncology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsClinical interests: general oncology, genito-urinary malignancy Research interests: conducting clinical trials in advanced prostate cancer, bladder cancer and renal cell carcinoma

  • Randall Stafford

    Randall Stafford

    Professor of Medicine (Stanford Center for Research in Disease Prevention)

    Current Research and Scholarly InterestsAs Director of the SPRC Program on Prevention Outcomes and Practices, my work focuses on cardiovascular disease treatment and prevention, the adoption of new technology and practices, and patterns of physician practice, particularly medication prescribing. Specific interests include measuring and improving the quality of outpatient care, disparities in health care by race, gender, age and socioeconomic status, and interventions to improve prevention outcomes.

  • Marcia L. Stefanick, Ph.D.

    Marcia L. Stefanick, Ph.D.

    Professor (Research) of Medicine (Stanford Prevention Research Center), of Obstetrics and Gynecology and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly InterestsMarcia L. Stefanick, Ph.D is a Professor of Medicine Professor of Obstetrics and Gynecology, and by courtesy, Professor of Epidemiology and Population Health at Stanford University School of Medicine. Dr. Stefanick’s research focuses on chronic disease prevention (particularly, heart disease, breast cancer, osteoporosis, and dementia) in both women and men. She is currently the Principal Investigator the Women’s Health Initiative (WHI) Extension Study, having been the PI of the Stanford Clinical Center of the landmark WHI Clinical Trials and Observational Study since 1994 and Chair of the WHI Steering and Executive Committees from 1998-2011, as well as PI of the WHI Strong and Healthy (WHISH) Trial which is testing the hypothesis that a DHHS-based physical activity intervention, being delivered to a multi-ethnic cohort of about 24,000 WHI participants across the U.S., aged 68-99 when the trial started in 2015, will reduce major cardiovascular events over 8 years, compared to an equal number of “usual activity” controls. Dr. Stefanick is also PI of the Osteoporotic Study of Men (MrOS) which is continuing to conduct clinical assessments of bone and body composition in survivors of an original cohort of nearly 6000 men aged 65 and over in 2001. As founding Director of the Stanford Women’s Health and Sex Differences in Medicine (WHSDM, “wisdom”) Center, she plays a major role in promoting research and teaching on Sex and Gender in Human Physiology and Disease, Women’s Health and Queer Health and Medicine. Dr. Stefanick also plays major leadership roles at the Stanford School of Medicine, including as co-leader of the Population Sciences Program of the Stanford Cancer Institute, Stanford’s NCI-funded comprehensive cancer center.

    Dr. Stefanick obtained her B.A. in biology from the University of Pennsylvania, Philadelphia, PA (1974), then pursued her interest in hormone and sex difference research at the Oregon Regional Primate Research Center, after which she obtained her PhD in Physiology at Stanford University, focusing on reproductive physiology and neuroendocrinology, with exercise physiology as a secondary focus. Her commitment to human research led to a post-doctoral fellowship in Cardiovascular Disease Prevention at the Stanford Prevention Research Center, which has been her academic home for nearly 40 years.

  • Aaron F. Straight

    Aaron F. Straight

    Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.

  • Zijie Sun

    Zijie Sun

    Professor of Urology, Emeritus

    Current Research and Scholarly InterestsWe focus on understanding the molecular mechanism of transcription factors that govern the transformation of normal cells to a neoplastic state. We are especially interested in nuclear hormone action and its interactions with other signaling pathways in tumor development and progression.

  • John B. Sunwoo, MD

    John B. Sunwoo, MD

    Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor, by courtesy, of Dermatology

    Current Research and Scholarly InterestsMy laboratory is focused on two primary areas of research: (1) the immune response to head and neck cancer and to a tumorigenic population of cells within these malignancies called cancer stem cells; (2) the developmental programs of a special lymphocyte population involved in innate immunity called natural killer (NK) cells; and (3) intra-tumor and inter-tumor heterogeneity.

  • James Swartz

    James Swartz

    James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering

    Current Research and Scholarly InterestsProgram Overview

    The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
    Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
    To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
    To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
    More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances.

  • Susan M. Swetter, MD

    Susan M. Swetter, MD

    Professor of Dermatology

    Current Research and Scholarly Interests1) Early detection of melanoma through enhanced screening, novel imaging technologies, and professional/public education to improve melanoma awareness. 2) Therapeutic prevention of melanoma and other skin cancers in high-risk groups. 4) Epidemiologic and sociodemographic melanoma risk factors. 4) Dermatologist liaison to ECOG-ACRIN Melanoma Committee and Co-founder/Co-Director of the national Melanoma Prevention Working Group, an interdisciplinary collaboration dedicated to melanoma control.

  • Karl G. Sylvester

    Karl G. Sylvester

    Professor of Surgery (Pediatric Surgery)

    Current Research and Scholarly InterestsScholarly interests include investigation of molecular markers of human disease that provide diagnostic function, serve as targets for possible therapeutic manipulation, or provide insight into mechanisms of human disease. Specific diseases of interest include common conditions of pregnancy, gut microbial ecology and Necrotizing Enterocolitis (NEC).

  • Daniel Sze, MD, PhD

    Daniel Sze, MD, PhD

    Professor of Radiology (Interventional Radiology)

    Current Research and Scholarly InterestsTransarterial administration of chemotherapeutics, radioactive microspheres, and biologics for the treatment of unresectable tumors; management of portal hypertension and complications of cirrhosis (TIPS); treatment of complications of organ transplantation; Venous and pulmonary arterial thrombolysis and reconstruction; Stent and Stent-graft treatment of peripheral vascular diseases, aneurysms, aortic dissections

  • Hua Tang

    Hua Tang

    Professor of Genetics and, by courtesy, of Statistics

    Current Research and Scholarly InterestsDevelop statistical and computational methods for population genomics analyses; modeling human evolutionary history; genetic association studies in admixed populations.

  • Jean Y. Tang MD PhD

    Jean Y. Tang MD PhD

    Professor of Dermatology

    Current Research and Scholarly InterestsMy research focuses on 2 main areas:

    1. Skin cancer:
    - New therapeutics to treat and prevent non-melanoma skin cancer, especially by targeting the Hedgehog signaling pathway for BCC tumors
    - Genomic analysis of drug-resistant cancers
    - Identifying risk factors for skin cancer in the Women's Health Initiative

    2. Epidermolysis Bullosa: gene therapy and protein therapy to replace defective/absent Collagen 7 in children and adults with Recessive Dystrophic EB

  • Sami Gamal-Eldin Tantawi

    Sami Gamal-Eldin Tantawi

    Professor of Particle Physics and Astrophysics, Emeritus

    BioFor over a decade I have advocated for dedicated research efforts on the basic physics of room temperature high gradient structures and new initiatives for the associated RF systems. This required demanding multidisciplinary collaboration to harness limited resources. The basic elements of the research needed to be inclusive to address not only the fundamentals of accelerator structures but also the fundamentals of associated technologies such as RF manipulation and novel microwave power sources. These basic research efforts were not bundled with specific developments for an application or a general program. The emerging technologies promise a broad, transformational impact.

    With this underlying philosophy in mind, in 2006 the US High Gradient Research Collaboration for which I am the spokesman was formed. SLAC is the host of this collaboration, which comprises MIT, ANL, University of Maryland and University of Colorado, NRL and a host of SBIR companies. This led to the revitalization of this research area worldwide. The international collaborative effort grew to include KEK in Japan, INFN, Frascati in Italy, the Cockcroft Institute in the UK, and the CLIC team at CERN.

    This effort led to a new understanding of the geometrical effects affecting high gradient operations. The collaborative work led to new advances in understanding the gradient limits of photonic band gap structures. Now we have a new optimization methodology for accelerator structure geometries and ongoing research on alternate and novel materials. These efforts doubled the usable gradient in normal conducting high gradient linacs to more than 100 MV/m, thus revitalizing the spread of the technology to other applications including compact Inverse Compton Scattering gamma-ray sources for national security applications, and compact proton linacs for cancer therapy.

  • Melinda L. Telli, M.D.

    Melinda L. Telli, M.D.

    Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsMy research focuses on the development of novel therapies for the treatment of triple-negative and hereditary cancer. Other areas of interest include prevention of cardiac damage associated with breast cancer treatment and cardiotoxicity of anti-cancer agents.

  • Nelson Teng

    Nelson Teng

    Professor of Obstetrics and Gynecology (Oncology), Emeritus

    Current Research and Scholarly InterestsGynecologic Malignancies
    Immunotherapy
    Biologic Response Modifiers
    New Drug Development
    Antigenic specificities of human antibodies encoded by the VH4-34 gene

  • Avnesh Thakor

    Avnesh Thakor

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsInterventional Radiologists can access almost any part of the human body without the need for conventional open surgical techniques. As such, they are poised to change the way patients can be treated, given they can locally deliver drug, gene, cell and cell-free therapies directly to affected organs using image-guided endovascular, percutaneous, endoluminal, and even using device implantation approaches