Stanford University
Showing 1-10 of 40 Results
-
Alex Aiken
Alcatel-Lucent Professor of Communications and Networking, Professor of Particle Physics and Astrophysics, and of Photon Science
BioAlex Aiken is the Alcatel-Lucent Professor of Computer Science at Stanford. Alex received his Bachelors degree in Computer Science and Music from Bowling Green State University in 1983 and his Ph.D. from Cornell University in 1988. Alex was a Research Staff Member at the IBM Almaden Research Center (1988-1993) and a Professor in the EECS department at UC Berkeley (1993-2003) before joining the Stanford faculty in 2003. His research interest is in areas related to programming languages.
-
Axel Brunger
Professor of Molecular and Cellular Physiology, of Neurology and Neurological Sciences, of Photon Science and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsOne of Axel Brunger's major goals is to decipher the molecular mechanisms of synaptic neurotransmitter release by conducting imaging and single-molecule/particle reconstitution experiments, combined with near-atomic resolution structural studies of the synaptic vesicle fusion machinery.
-
Philip Bucksbaum
Marguerite Blake Wilbur Professor of Natural Science and Professor of Photon Science, of Applied Physics and of Physics
BioPhil Bucksbaum holds the Marguerite Blake Wilbur Chair in Natural Science at Stanford University, with appointments in Physics, Applied Physics, and in Photon Science at SLAC. He conducts his research in the Stanford PULSE Institute (https://web.stanford.edu/~phbuck). He and his wife Roberta Morris live in Menlo Park, California. Their grown daughter lives in Toronto.
Bucksbaum was born and raised in Iowa, and graduated from Harvard in 1975. He attended U.C. Berkeley on a National Science Foundation Graduate Fellowship and received his Ph.D. in 1980 for atomic parity violation experiments under Professor Eugene Commins, with whom he also has co-authored a textbook, “Weak Interactions of Leptons and Quarks.” In 1981 he joined Bell Laboratories, where he pursued new applications of ultrafast coherent radiation from terahertz to vacuum ultraviolet, including time-resolved VUV ARPES, and strong-field laser-atom physics.
He joined the University of Michigan in 1990 and stayed for sixteen years, becoming Otto Laporte Collegiate Professor and then Peter Franken University Professor. He was founding Director of FOCUS, a National Science Foundation Physics Frontier Center, where he pioneered research using ultrafast lasers to control quantum systems. He also launched the first experiments in ultrafast x-ray science at the Advanced Photon Source at Argonne National Lab. In 2006 Bucksbaum moved to Stanford and SLAC, and organized the PULSE Institute to develop research utilizing the world’s first hard x-ray free-electron laser, LCLS. In addition to directing PULSE, he has previously served as Department Chair of Photon Science and Division Director for Chemical Science at SLAC. His current research is in laser interrogation of atoms and molecules to explore and image structure and dynamics on the femtosecond scale. He currently has more than 250 publications.
Bucksbaum is a Fellow of the APS and the Optical Society, and has been elected to the National Academy of Sciences and the American Academy of Arts and Sciences. He has held Guggenheim and Miller Fellowships, and received the Norman F. Ramsey Prize of the American Physical Society for his work in ultrafast and strong-field atomic and molecular physics. He served as the Optical Society President in 2014, and also served as the President of the American Physical Society in 2020. He has led or participated in many professional service activities, including NAS studies, national and international boards, initiatives, lectureships and editorships. -
Wah Chiu
Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.
-
William Chueh
Director, Precourt Institute for Energy, Associate Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, and Senior Fellow at the Precourt Institute for Energy
BioThe availability of low-cost but intermittent renewable electricity (e.g., derived from solar and wind) underscores the grand challenge to store and dispatch energy so that it is available when and where it is needed. Redox-active materials promise the efficient transformation between electrical, chemical, and thermal energy, and are at the heart of carbon-neutral energy cycles. Understanding design rules that govern materials chemistry and architecture holds the key towards rationally optimizing technologies such as batteries, fuel cells, electrolyzers, and novel thermodynamic cycles. Electrochemical and chemical reactions involved in these technologies span diverse length and time scales, ranging from Ångströms to meters and from picoseconds to years. As such, establishing a unified, predictive framework has been a major challenge. The central question unifying our research is: “can we understand and engineer redox reactions at the levels of electrons, ions, molecules, particles and devices using a bottom-up approach?” Our approach integrates novel synthesis, fabrication, characterization, modeling and analytics to understand molecular pathways and interfacial structure, and to bridge fundamentals to energy storage and conversion technologies by establishing new design rules.
-
Yi Cui
Fortinet Founders Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, Senior Fellow at Woods and Professor, by courtesy, of Chemistry
BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.
-
Peter Dahlberg
Assistant Professor of Photon Science and of Structural Biology
BioPeter Dahlberg received his undergraduate degree at McGill University in 2011 and his Ph.D. in biophysics from the University of Chicago in 2016. He then came to Stanford to work with W. E. Moerner and Wah Chiu to develop correlative light and electron microscopy methods. These methods give highly specific information on the machines that fill cells and make them work. In 2021 he was awarded SLAC’s Panofsky Fellowship to continue his work on correlative microscopy. In 2023 he transitioned to a Staff Scientist role at SLAC. See the group website below for more information.
-
Thomas Devereaux
Professor of Photon Science and of Materials Science and Engineering
Current Research and Scholarly InterestsMy main research interests lie in the areas of theoretical condensed matter physics and computational physics. My research effort focuses on using the tools of computational physics to understand quantum materials. Fortunately, we are poised in an excellent position as the speed and cost of computers have allowed us to tackle heretofore unaddressed problems involving interacting systems. The goal of my research is to understand electron dynamics via a combination of analytical theory and numerical simulations to provide insight into materials of relevance to energy science. My group carries out numerical simulations on SIMES’ high-performance supercomputer and US and Canadian computational facilities. The specific focus of my group is the development of numerical methods and theories of photon-based spectroscopies of strongly correlated materials.
-
Leora Dresselhaus-Marais
Assistant Professor of Materials Science and Engineering, of Photon Science and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsMy group develops new methods to update old processes in metals manufacturing
-
Mike Dunne
Professor of Photon Science
Current Research and Scholarly InterestsThe Linac Coherent Light Source (LCLS) is the world's first X-Ray Free Electron Laser. It represents a revolution in x-ray science. The x-rays produced by LCLS are a billion times brighter than can be produced by conventional sources, such as a synchrotron, and are delivered in ultrafast bursts- typically a few tens of femtoseconds (10^-15 seconds). This opens up transformational opportunities for the study of structural biology, quantum materials, ultrafast chemistry, and novel states of matter