Stanford University
Showing 31-40 of 167 Results
-
William Chueh
Director, Precourt Institute for Energy, Kimmelman Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, and Senior Fellow at the Precourt Institute for Energy
BioThe availability of low-cost but intermittent renewable electricity (e.g., derived from solar and wind) underscores the grand challenge to store and dispatch energy so that it is available when and where it is needed. Redox-active materials promise the efficient transformation between electrical, chemical, and thermal energy, and are at the heart of carbon-neutral energy cycles. Understanding design rules that govern materials chemistry and architecture holds the key towards rationally optimizing technologies such as batteries, fuel cells, electrolyzers, and novel thermodynamic cycles. Electrochemical and chemical reactions involved in these technologies span diverse length and time scales, ranging from Ångströms to meters and from picoseconds to years. As such, establishing a unified, predictive framework has been a major challenge. The central question unifying our research is: “can we understand and engineer redox reactions at the levels of electrons, ions, molecules, particles and devices using a bottom-up approach?” Our approach integrates novel synthesis, fabrication, characterization, modeling and analytics to understand molecular pathways and interfacial structure, and to bridge fundamentals to energy storage and conversion technologies by establishing new design rules.
-
Bruce Clemens
Walter B. Reinhold Professor in the School of Engineering, Emeritus and Academic Secretary to the University
BioClemens studies growth and structure of thin film, interface and nanostructured materials for catalytic, electronic and photovoltaic applications. He and his group investigate phase transitions and kinetics in nanostructured materials, and perform nanoparticle engineering for hydrogen storage and catalysis. Recently he and his collaborators have developed nano-portals for efficient injection of hydrogen into storage media, dual-phase nanoparticles for catalysis, amorphous metal electrodes for semiconductor devices, and a lift-off process for forming free-standing, single-crystal films of compound semiconductors.
-
Craig Criddle
Professor of Civil and Environmental Engineering, Emeritus
Current Research and Scholarly InterestsCriddle's interests include microbial biotechnology for the circular economy, including recovery of clean water from used water, renewable energy, valuable materials that can replace fossil-carbon derived materials. Current projects include energy-efficient anaerobic wastewater treatment technology, assessment of new treatment trains that yield high quality water; fossil carbon plastics biodegradation, and biotechnology for production of bioplastics that can replace fossil carbon plastics.
-
Yi Cui
Fortinet Founders Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, Senior Fellow at Woods, at Precourt and Professor, by courtesy, of Chemistry
BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.
-
Justine Dachille
Understand Energy Program Manager, Precourt Institute for Energy
Current Role at StanfordUnderstand Energy, Program Manager
-
David Danielson
Adjunct Professor
BioDavid T. Danielson became a Precourt energy scholar at Stanford in 2016. With Stuart Macmillan and Joel Moxley, Dave co-teaches the yearlong course "Energy Transformation Collaborative." This project-based course provides a launchpad for the creation and development of transformational energy ventures. Interdisciplinary student teams research, analyze and refine detailed plans for high-impact opportunities in the context of the new energy venture development framework offered in this course.
Since January 2017, Dave has been managing director of Breakthrough Energy Ventures, a $1 billion fund focused on fighting climate change by investing in clean energy innovation.
From 2012 to 2016, Dave was assistant secretary of the U.S. Department of Energy’s Office of Energy Efficiency & Renewable Energy. There, he directed the U.S. government’s innovation strategy in the areas of sustainable transportation, renewable power, energy efficiency and clean-energy manufacturing, investing about $2 billion annually into American clean-energy innovation. He is considered a global expert in the development of next generation clean-energy technologies and the creation of new R&D and organizational models for high-impact clean energy innovation.
Prior to being appointed by President Obama as assistant secretary, Dave was the first hire at DOE’s Advanced Research Projects Agency– Energy (ARPA-E), a funding agency that focuses on the development of high-risk, high-reward clean-energy technologies. Prior to his government service, he was a clean-energy venture capitalist and, as a PhD student at MIT, was the founder and president of the MIT Energy Club. -
Reinhold Dauskardt
Ruth G. and William K. Bowes Professor in the School of Engineering
BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.
-
Steven J. Davis
Professor of Earth System Science, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Energy Science and Engineering
BioSteve Davis is a highly-cited researcher and expert in earth system science, emissions and energy scenarios, climate impacts and solutions, and corporate climate strategy. He is a Professor of Earth System Science in the Stanford Doerr School of Sustainability and leads the Sustainable Solutions Lab, a research group dedicated to quantifying how different human activities are affecting climate and air quality, how those environmental changes in turn jeopardize human wellbeing, and the relative priority of solutions.
Steve was a Contributing Author of two Working Group III chapters in the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), serves on the Scientific Steering Committee of the Global Carbon Project, was the Lead Author of the Mitigation chapter in the U.S. Fifth National Climate Assessment, and is a member of the Technical Council of the Science Based Targets Initiative.
Prior to his science career, Steve worked as a lawyer to venture-backed companies in Silicon Valley, and holds degrees from Stanford University, the University of Virginia School of Law and the University of Florida, where he double-majored in Political Science and Philosophy. -
Jeffrey Decker
Program Director, Precourt Institute for Energy
BioJeff Decker is managing director of the Technology Transition for Defense Program and co-instructor of Hacking for Defense course at Stanford University. Hacking for Defense uses the Lean Startup technique to tackle complex problems critical to the government around national security, energy networks, cyber security, and AI, and develop new technologies with teams of engineers, scientists, MBA’s and policy experts. With the program, Jeff has taught more than 300 students, faculty, and government personnel user-centered design from over 2 dozen colleges and universities, helping them solve more than 75 unique national security challenges for the Defense Department and related industries. Several student teams have gone on to form companies winning Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, gaining venture capital funding, and one team even became a program of record. Jeff’s work and research focuses generally on defense innovation and dual-use technologies, with a focus on developing go-to-defense market strategies for technology startups and fostering defense-industry partnerships. With his Lean Startup experience and expertise with Hacking for Defense, plus his military service, Jeff is a sought-after expert when it comes to national security and solving Defense Department challenges.
Jeff served in the U.S. Army as a 2nd Ranger Battalion light infantry squad leader in Iraq and Afghanistan. Following his service, he earned a MS in International Relations (Laws), and a doctorate in International Relations before conducting national security and international affairs research at the RAND Corporation.