Stanford University
Showing 2,381-2,400 of 2,438 Results
-
Serena Yeung-Levy
Assistant Professor of Biomedical Data Science and, by courtesy, of Electrical Engineering and of Computer Science
BioDr. Serena Yeung-Levy is an Assistant Professor of Biomedical Data Science and, by courtesy, of Computer Science and of Electrical Engineering at Stanford University. Her research focus is on developing artificial intelligence and machine learning algorithms to enable new capabilities in biomedicine and healthcare. She has extensive expertise in deep learning and computer vision, and has developed computer vision algorithms for analyzing diverse types of visual data ranging from video capture of human behavior, to medical images and cell microscopy images.
Dr. Yeung-Levy leads the Medical AI and Computer Vision Lab at Stanford. She is affiliated with the Stanford Artificial Intelligence Laboratory, the Clinical Excellence Research Center, and the Center for Artificial Intelligence in Medicine & Imaging. She is also a Chan Zuckerberg Biohub Investigator and has served on the NIH Advisory Committee to the Director Working Group on Artificial Intelligence. -
Paul Yock, MD
Martha Meier Weiland Professor in the School of Medicine and Professor of Bioengineering, Emeritus
Current Research and Scholarly InterestsHealth technology innovation using the Biodesign process: a systematic approach to the design of biomedical technologies based on detailed clinical and economic needs characterization. New approaches for interdisciplinary training of health technology innovators, including processes for identifying value opportunities in creating new technology-based approaches to health care.
-
Jong H. Yoon
Professor of Psychiatry and Behavioral Sciences (Public Mental Health & Population Sciences)
Current Research and Scholarly InterestsMy research seeks to discover the brain mechanisms responsible for schizophrenia and to translate this knowledge into the clinic to improve how we diagnose and treat this condition. Towards these ends, our group has been developing cutting-edge neuroimaging tools to identify neurobiological abnormalities and test novel systems-level disease models of psychosis and schizophrenia directly in individuals with these conditions.
We have been particularly interested in the role of neocortical-basal ganglia circuit dysfunction. A working hypothesis is that some of the core symptoms of schizophrenia are attributable to impairments in neocortical function that results in disconnectivity with components of the basal ganglia and dysregulation of their activity. The Yoon Lab has developed new high-resolution functional magnetic resonance imaging methods to more precisely measure the function of basal ganglia components, which given their small size and location deep within the brain has been challenging. This includes ways to measure the activity of nuclei that store and control the release of dopamine throughout the brain, a neurochemical that is one of the most important factors in the production of psychosis in schizophrenia and other neuropsychiatric conditions. -
Kyan Younes, MD
Clinical Assistant Professor, Adult Neurology
BioDr. Younes is a fellowship-trained, board-certified neurologist and a clinical assistant professor in the Department of Neurology at Stanford University School of Medicine.
His areas of expertise include the diagnosis and treatment of Alzheimer’s disease, frontotemporal dementia, primary progressive aphasia, Lewy body dementia, normal pressure hydrocephalus and cognitive and behavioral impairments. For each patient, Dr. Younes develops a personalized plan of care. A plan may include his close collaboration with experts from psychiatry, nursing, pharmacy, genetic counseling, and other specialties. His goal is to ensure that each patient receives care that is both comprehensive and compassionate.
To help lead advances and innovations in his field, Dr. Younes conducts extensive research. He is studying the clinical, neuropsychological, socioemotional, genetic, and pathological features when a patient experiences degeneration of the right anterior temporal lobe area of the brain. This disorder can affect a person’s ability to process emotions and person-specific knowledge.
He also is researching how multimodal brain imaging, including magnetic resonance imaging (MRI) and Positron Emission Tomography (PET) combined with machine learning can help improve the detection of neurodegenerative diseases. In other research, he has participated in clinical trials of new drug therapies for Alzheimer’s disease.
Dr. Younes has presented research findings at meetings of the American Neurological Association, American Academy of Neurology, and American Psychiatric Association. Topics have included predictors of cognitive performance in dementia.
He has co-authored research articles published in the American Journal of Psychiatry, Annals of Clinical and Translational Neurology, Journal of Neuroimaging, and elsewhere. Subjects of these articles have included guidelines for diagnosing the effects of right anterior temporal lobe degeneration on behavior, treatment for symptoms of encephalitis, and the impact of mild traumatic brain injury on healthy older adults.
Dr. Younes has written chapters on frontotemporal dementia for Psychiatric Clinics as well as the epilepsy, coma, acute ischemic stroke, meningitis and encephalitis chapters for the textbook The Little Black Book of Neurology.
He is a member of the American Academy of Neurology, American Neurological Association, Alzheimer’s Association, and International Society for Frontotemporal Dementias. -
Bo Yu, MD
Associate Professor of Obstetrics and Gynecology (Reproductive Endocrinology and Infertility)
Current Research and Scholarly InterestsDr. Yu’s lab is interested in ovarian physiology and pathology, as well as assisted reproductive technologies (ART).
-
Greg Zaharchuk
Professor of Radiology (Neuroimaging and Neurointervention)
Current Research and Scholarly InterestsImproving medical image quality using deep learning artificial intelligence
Imaging of cerebral hemodynamics with MRI and CT
Noninvasive oxygenation measurement with MRI
Clinical imaging of cerebrovascular disease
Imaging of cervical artery dissection
MR/PET in Neuroradiology
Resting-state fMRI for perfusion imaging and stroke -
Hengameh Zahed, MD, PhD
Clinical Assistant Professor, Adult Neurology
BioDr. Zahed is a board-certified, fellowship-trained neurologist with the Stanford Medicine Movement Disorders Center. She is also a clinical assistant professor in the Department of Neurology and Neurological Sciences.
She diagnoses and treats a wide range of movement disorders including Parkinson’s disease, Huntington’s disease, essential tremor, dystonia, and ataxia. She creates a personalized treatment plan for each of her patients using a variety of treatment options, including pharmacological and non-pharmacological options, deep brain stimulation (DBS) treatment for Parkinson's disease and tremors, and botulinum toxin injections for movement disorders and spasticity.
Prior to joining Stanford University, Dr. Zahed completed a neurology residency and fellowship in movement disorders at University of California, San Francisco (UCSF), where she also earned her MD and PhD in biomedical sciences. Dr. Zahed’s research interests include understanding the genetic and electrophysiological underpinnings of movement disorders and investigating applications of wearable technologies to monitor symptoms and improve the quality of life in patients with movement disorders. She also participates in clinical trials of new therapeutics for Parkinson’s disease and other movement disorders.
Dr. Zahed has published in Movement Disorders, Molecular Genetics & Genomic Medicine, The Journal of Clinical Investigation, American Journal of Human Genetics, Cell, and other peer-reviewed journals. She has presented to her peers at international, national, and regional meetings. These meetings have included the International Congress of Parkinson’s Disease and Movement Disorders, the Hereditary Disease Foundation Symposium, the World Society for Stereotactic and Functional Neurosurgery, and the Society for Neuroscience.
Dr. Zahed is a member of the International Parkinson and Movement Disorders Society. -
Natalie M. Zahr
Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Major Laboratories)
BioNatalie M. Zahr received a graduate education in the basic sciences including the study of neuro- pharmacology, physiology, and anatomy. After completing her graduate training in electrophysiology, she began a postdoctoral fellowship as a magnetic resonance imaging (MRI) scientist. Her work focuses on translational approaches using in vivo MR imaging and spectroscopy in studies of human with Alcohol Use Disorders (AUD) and in rodent models of alcohol exposure with the goal of identifying mechanisms of alcohol effects on the brain. Her human studies include participants with HIV, those co-morbid for HIV and AUD and recently, aging individuals with mild cognitive impairment (MCI). Her position allows her to explore emerging MR technologies and apply them to test relevant hypotheses. Before joining Stanford, she taught at several local institutions including UC Berkeley extension and Santa Clara University where she enjoyed sharing her knowledge and enthusiasm for learning with students.
-
Justin Zahrt
Assistant Director for Intellectual Property, Office of Technology Licensing (OTL)
BioJustin Zahrt is Assistant Director for Intellectual Property at the Stanford Office of Technology Licensing. Prior to joining Stanford, he was a partner at Rimon Law, subsequent to his partnership at Duane Morris, LLP. At both law firms, Justin specialized in IP portfolio management and counseling, including preparation and prosecution of patent applications, in both the United States and worldwide, providing a full spectrum of protection for client inventions and technology.
-
Jamil Zaki
Professor of Psychology
Current Research and Scholarly InterestsMy research focuses on the cognitive and neural bases of social behavior, and in particular on how people respond to each other's emotions (empathy), why they conform to each other (social influence), and why they choose to help each other (prosociality).