My research focuses on the ecology of infectious disease. I am interested in how climate, species interactions, and global change drive infectious disease dynamics in humans and natural ecosystems. This research combines mathematical modeling and empirical work.

I finished my PhD in 2012 at the University of California Santa Barbara in Ecology, Evolution, and Marine Biology. I then completed a 2-year NSF postdoctoral research fellowship in the Intersection of Biology and Mathematical and Physical Sciences and Engineering at the University of North Carolina at Chapel Hill and North Carolina State University. I have been at Stanford since January 2015.

Academic Appointments

Boards, Advisory Committees, Professional Organizations

  • Faculty Fellow, Center for Innovation in Global Health (2015 - Present)
  • Member, Jasper Ridge Advisory Committee (2015 - Present)

Professional Education

  • B.S., University of Georgia, Honors Interdisciplinary Studies in Mathematical Biology (2007)
  • PhD, University of California Santa Barbara, Ecology, Evolution, and Marine Biology (2012)

Current Research and Scholarly Interests

Our research focuses on the ecology of infectious disease. We are interested in how climate, species interactions, and global change drive infectious disease dynamics in humans and natural ecosystems. This research combines mathematical modeling and empirical work. Our main study systems include vector-borne diseases in humans and fungal pathogens in California grasses.

Stanford Advisees

Graduate and Fellowship Programs

All Publications

  • A global test of ecoregions. Nature ecology & evolution Smith, J. R., Letten, A. D., Ke, P., Anderson, C. B., Hendershot, J. N., Dhami, M. K., Dlott, G. A., Grainger, T. N., Howard, M. E., Morrison, B. M., Routh, D., San Juan, P. A., Mooney, H. A., Mordecai, E. A., Crowther, T. W., Daily, G. C. 2018


    A foundational paradigm in biological and Earth sciences is that our planet is divided into distinct ecoregions and biomes demarking unique assemblages of species. This notion has profoundly influenced scientific research and environmental policy. Given recent advances in technology and data availability, however, we are now poised to ask whether ecoregions meaningfully delimit biological communities. Using over 200 million observations of plants, animals and fungi we show compelling evidence that ecoregions delineate terrestrial biodiversity patterns. We achieve this by testing two competing hypotheses: the sharp-transition hypothesis, positing that ecoregion borders divide differentiated biotic communities; and the gradual-transition hypothesis, proposing instead that species turnover is continuous and largely independent of ecoregion borders. We find strong support for the sharp-transition hypothesis across all taxa, although adherence to ecoregion boundaries varies across taxa. Although plant and vertebrate species are tightly linked to sharp ecoregion boundaries, arthropods and fungi show weaker affiliations to this set of ecoregion borders. Our results highlight the essential value of ecological data for setting conservation priorities and reinforce the importance of protecting habitats across as many ecoregions as possible. Specifically, we conclude that ecoregion-based conservation planning can guide investments that simultaneously protect species-, community- and ecosystem-level biodiversity, key for securing Earth's life support systems into the future.

    View details for DOI 10.1038/s41559-018-0709-x

    View details for PubMedID 30397301

  • Foliar pathogens are unlikely to stabilize coexistence of competing species in a California grassland. Ecology Spear, E. R., Mordecai, E. A. 2018


    Pathogen infection is common in wild plants and animals, and may regulate their populations. If pathogens have narrow host ranges and increase with the density of their favored hosts, they may promote host species diversity by suppressing common species to the benefit of rare species. Yet, because many pathogens infect multiple co-occurring hosts, they may not strongly respond to the relative abundance of a single host species. Are natural communities dominated by specialized pathogens that respond to the relative abundance of a specific host or by pathogens with broad host ranges and limited responses to the relative abundance of single host? The answer determines the potential for pathogens to promote host coexistence, as often hypothesized, or to have negligible or even negative effects on host coexistence. We lack a systematic understanding of the impacts, identities, and host ranges of pathogens in natural communities. Here we characterize a community of foliar fungal pathogens and evaluate their host specificity and fitness impacts in a California grassland community of native and exotic species. We found that most of the commonly isolated fungal pathogens were multi-host, with intermediate to low specialization. The amount of pathogen damage each host experienced was independent of host species local relative abundance. Despite pathogen sharing among the host species, fungal communities slightly differed in composition across host species. Plants with high pathogen damage tended to have lower seed production but the relationship was weak, suggesting limited fitness impacts. Moreover, seed production was not dependent on the local relative abundance of each plant species, suggesting that stabilizing coexistence mechanisms may operate at larger spatial scales in this community. Because foliar pathogens in this grassland community are multi-host and have small fitness impacts, they are unlikely to promote negative frequency dependence or plant species coexistence in this system. Still, given that pathogen community composition differentiates across host species, some more subtle feedbacks between host relative abundance and pathogen community composition, damage, and fitness impacts are possible, which could, in turn, promote either coexistence or competitive exclusion.

    View details for DOI 10.1002/ecy.2427

    View details for PubMedID 30179251

  • Temperature explains broad patterns of Ross River virus transmission. eLife Shocket, M. S., Ryan, S. J., Mordecai, E. A. 2018; 7


    Thermal biology predicts that vector-borne disease transmission peaks at intermediate temperatures and declines at high and low temperatures. However, thermal optima and limits remain unknown for most vector-borne pathogens. We built a mechanistic model for the thermal response of Ross River virus, an important mosquito-borne pathogen in Australia, Pacific Islands, and potentially at risk of emerging worldwide. Transmission peaks at moderate temperatures (26.4°C) and declines to zero at thermal limits (17.0 and 31.5°C). The model accurately predicts that transmission is year-round endemic in the tropics but seasonal in temperate areas, resulting in the nationwide seasonal peak in human cases. Climate warming will likely increase transmission in temperate areas (where most Australians live) but decrease transmission in tropical areas where mean temperatures are already near the thermal optimum. These results illustrate the importance of nonlinear models for inferring the role of temperature in disease dynamics and predicting responses to climate change.

    View details for DOI 10.7554/eLife.37762

    View details for PubMedID 30152328

  • Temperature drives Zika virus transmission: evidence from empirical and mathematical models PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES Tesla, B., Demakovsky, L. R., Mordecai, E. A., Ryan, S. J., Bonds, M. H., Ngonghala, C. N., Brindley, M. A., Murdock, C. C. 2018; 285 (2884)


    Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C-34.7°C. Thus, as temperatures move towards the predicted thermal optimum (29°C) owing to climate change, urbanization or seasonality, Zika could expand north and into longer seasons. By contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.

    View details for DOI 10.1098/rspb.2018.0795

    View details for Web of Science ID 000441725900004

    View details for PubMedID 30111605

  • Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R-0 of Zika in Aedes aegypti PLOS NEGLECTED TROPICAL DISEASES Tesla, B., Demakovsky, L. R., Packiam, H. S., Mordecai, E. A., Rodriguez, A. D., Bonds, M. H., Brindley, M. A., Murdock, C. C. 2018; 12 (8): e0006733


    Zika virus (ZIKV) is an arbovirus primarily transmitted by Aedes mosquitoes. Like most viral infections, ZIKV viremia varies over several orders of magnitude, with unknown consequences for transmission. To determine the effect of viral concentration on ZIKV transmission risk, we exposed field-derived Ae. aegypti mosquitoes to four doses (103, 104, 105, 106 PFU/mL) representative of potential variation in the field. We demonstrate that increasing ZIKV dose in the blood-meal significantly increases the probability of mosquitoes becoming infected, and consequently disseminating virus and becoming infectious. Additionally, we observed significant interactions between dose and days post-infection on dissemination and overall transmission efficiency, suggesting that variation in ZIKV dose affects the rates of midgut escape and salivary gland invasion. We did not find significant effects of dose on mosquito mortality. We also demonstrate that detecting virus using RT-qPCR approaches rather than plaque assays potentially over-estimates key transmission parameters, including the time at which mosquitoes become infectious and viral burden. Finally, using these data to parameterize an R0 model, we showed that increasing viremia from 104 to 106 PFU/mL increased relative R0 3.8-fold, demonstrating that variation in viremia substantially affects transmission risk.

    View details for DOI 10.1371/journal.pntd.0006733

    View details for Web of Science ID 000443381000055

    View details for PubMedID 30133450

  • Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission PLOS NEGLECTED TROPICAL DISEASES Huber, J. H., Childs, M. L., Caldwell, J. M., Mordecai, E. A. 2018; 12 (5): e0006451


    Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal variation in temperature, the model provides a baseline for mechanistically understanding environmental suitability for virus transmission by Aedes aegypti. Overlaying the impact of human activities and socioeconomic factors onto this mechanistic temperature-dependent framework is critical for understanding likelihood and magnitude of outbreaks.

    View details for DOI 10.1371/journal.pntd.0006451

    View details for Web of Science ID 000434021900021

    View details for PubMedID 29746468

    View details for PubMedCentralID PMC5963813

  • Disease ecology, health and the environment: a framework to account for ecological and socio-economic drivers in the control of neglected tropical diseases PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES Garchitorena, A., Sokolow, S. H., Roche, B., Ngonghala, C. N., Jocque, M., Lund, A., Barry, M., MORDECAI, E. A., Daily, G. C., Jones, J. H., Andrews, J. R., Bendavid, E., Luby, S. P., LaBeaud, A. D., Seetah, K., Guegan, J. F., Bonds, M. H., De Leo, G. A. 2017; 372 (1722)


    Reducing the burden of neglected tropical diseases (NTDs) is one of the key strategic targets advanced by the Sustainable Development Goals. Despite the unprecedented effort deployed for NTD elimination in the past decade, their control, mainly through drug administration, remains particularly challenging: persistent poverty and repeated exposure to pathogens embedded in the environment limit the efficacy of strategies focused exclusively on human treatment or medical care. Here, we present a simple modelling framework to illustrate the relative role of ecological and socio-economic drivers of environmentally transmitted parasites and pathogens. Through the analysis of system dynamics, we show that periodic drug treatments that lead to the elimination of directly transmitted diseases may fail to do so in the case of human pathogens with an environmental reservoir. Control of environmentally transmitted diseases can be more effective when human treatment is complemented with interventions targeting the environmental reservoir of the pathogen. We present mechanisms through which the environment can influence the dynamics of poverty via disease feedbacks. For illustration, we present the case studies of Buruli ulcer and schistosomiasis, two devastating waterborne NTDs for which control is particularly challenging.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.

    View details for DOI 10.1098/rstb.2016.0128

    View details for Web of Science ID 000399956400009

    View details for PubMedID 28438917

  • Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS neglected tropical diseases Mordecai, E. A., Cohen, J. M., Evans, M. V., Gudapati, P., Johnson, L. R., Lippi, C. A., Miazgowicz, K., Murdock, C. C., Rohr, J. R., Ryan, S. J., Savage, V., Shocket, M. S., Stewart Ibarra, A., Thomas, M. B., Weikel, D. P. 2017; 11 (4)


    Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. We use mechanistic transmission models to derive predictions for how the probability and magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, and we show that these predictions are well matched by human case data. Across all three viruses, models and human case data both show that transmission occurs between 18-34°C with maximal transmission occurring in a range from 26-29°C. Controlling for population size and two socioeconomic factors, temperature-dependent transmission based on our mechanistic model is an important predictor of human transmission occurrence and incidence. Risk maps indicate that tropical and subtropical regions are suitable for extended seasonal or year-round transmission, but transmission in temperate areas is limited to at most three months per year even if vectors are present. Such brief transmission windows limit the likelihood of major epidemics following disease introduction in temperate zones.

    View details for DOI 10.1371/journal.pntd.0005568

    View details for PubMedID 28448507

  • Environmental and Social Change Drive the Explosive Emergence of Zika Virus in the Americas. PLoS neglected tropical diseases Ali, S., Gugliemini, O., Harber, S., Harrison, A., Houle, L., Ivory, J., Kersten, S., Khan, R., Kim, J., LeBoa, C., Nez-Whitfield, E., O'Marr, J., Rothenberg, E., Segnitz, R. M., Sila, S., Verwillow, A., Vogt, M., Yang, A., Mordecai, E. A. 2017; 11 (2)


    Since Zika virus (ZIKV) was detected in Brazil in 2015, it has spread explosively across the Americas and has been linked to increased incidence of microcephaly and Guillain-Barré syndrome (GBS). In one year, it has infected over 500,000 people (suspected and confirmed cases) in 40 countries and territories in the Americas. Along with recent epidemics of dengue (DENV) and chikungunya virus (CHIKV), which are also transmitted by Aedes aegypti and Ae. albopictus mosquitoes, the emergence of ZIKV suggests an ongoing intensification of environmental and social factors that have given rise to a new regime of arbovirus transmission. Here, we review hypotheses and preliminary evidence for the environmental and social changes that have fueled the ZIKV epidemic. Potential drivers include climate variation, land use change, poverty, and human movement. Beyond the direct impact of microcephaly and GBS, the ZIKV epidemic will likely have social ramifications for women's health and economic consequences for tourism and beyond.

    View details for DOI 10.1371/journal.pntd.0005135

    View details for PubMedID 28182667

    View details for PubMedCentralID PMC5300271

  • Mathematical models are a powerful method to understand and control the spread of Huanglongbing PEERJ Taylor, R. A., Mordecai, E. A., Gilligan, C. A., Rohr, J. R., Johnson, L. R. 2016; 4


    Huanglongbing (HLB), or citrus greening, is a global citrus disease occurring in almost all citrus growing regions. It causes substantial economic burdens to individual growers, citrus industries and governments. Successful management strategies to reduce disease burden are desperately needed but with so many possible interventions and combinations thereof it is difficult to know which are worthwhile or cost-effective. We review how mathematical models have yielded useful insights into controlling disease spread for other vector-borne plant diseases, and the small number of mathematical models of HLB. We adapt a malaria model to HLB, by including temperature-dependent psyllid traits, "flushing" of trees, and economic costs, to show how models can be used to highlight the parameters that require more data collection or that should be targeted for intervention. We analyze the most common intervention strategy, insecticide spraying, to determine the most cost-effective spraying strategy. We find that fecundity and feeding rate of the vector require more experimental data collection, for wider temperatures ranges. Also, the best strategy for insecticide intervention is to spray for more days rather than pay extra for a more efficient spray. We conclude that mathematical models are able to provide useful recommendations for managing HLB spread.

    View details for DOI 10.7717/peerj.2642

    View details for Web of Science ID 000387170800006

    View details for PubMedID 27833809

  • The role of competition - colonization tradeoffs and spatial heterogeneity in promoting trematode coexistence ECOLOGY Mordecai, E. A., Jaramillo, A. G., Ashford, J. E., Hechinger, R. F., Lafferty, K. D. 2016; 97 (6): 1484-1496


    Competition - colonization tradeoffs occur in many systems, and theory predicts that they can strongly promote species coexistence. However, there is little empirical evidence that observed competition - colonization tradeoffs are strong enough to maintain diversity in natural systems. This is due in part to a mismatch between theoretical assumptions and biological reality in some systems. We tested whether a competition - colonization tradeoff explains how a diverse trematode guild coexists in California horn snail populations, a system that meets the requisite criteria for the tradeoff to promote coexistence. A field experiment showed that subordinate trematode species tended to have higher colonization rates than dominant species. This tradeoff promoted coexistence in parameterized models but did not fully explain trematode diversity and abundance, suggesting a role of additional diversity maintenance mechanisms. Spatial heterogeneity is an alternative way to promote coexistence if it isolates competing species. We used scale transition theory to expand the competition - colonization tradeoff model to include spatial variation. The parameterized model showed that spatial variation in trematode prevalence did not isolate most species sufficiently to explain the overall high diversity, but could benefit some rare species. Together, the results suggest that several mechanisms combine to maintain diversity, even when a competition - colonization tradeoff occurs.

    View details for DOI 10.1890/15-0753.1

    View details for Web of Science ID 000377219900012

    View details for PubMedID 27459779

  • The role of drought- and disturbance-mediated competition in shaping community responses to varied environments OECOLOGIA Napier, J. D., Mordecai, E. A., Heckman, R. W. 2016; 181 (2): 621-632


    By altering the strength of intra- and interspecific competition, droughts may reshape plant communities. Furthermore, species may respond differently to drought when other influences, such as herbivory, are considered. To explore this relationship, we conducted a greenhouse experiment measuring responses to inter- and intraspecific competition for two grasses, Schedonorus arundinaceus and Paspalum dilatatum, while varying water availability and simulating herbivory via clipping. We then parameterized population growth models to examine the long-term outcome of competition under these conditions. Under drought, S. arundinaceus was less water stressed than P. dilatatum, which exhibited severe water stress; clipping alleviated this stress, increasing the competitive ability of P. dilatatum relative to S. arundinaceus. Although P. dilatatum competed weakly under drought, clipping reduced water stress in P. dilatatum, thereby enhancing its ability to compete with S. arundinaceus under drought. Supporting these observations, population growth models predicted that P. dilatatum would exclude S. arundinaceus when clipped under drought, while S. arundinaceus would exclude P. dilatatum when unclipped under drought. When the modeled environment varied temporally, environmental variation promoted niche differences that, though insufficient to maintain stable coexistence, prevented unconditional competitive exclusion by promoting priority effects. Our results suggest that it is important to consider how species respond not just to stable, but also to variable, environments. When species differ in their responses to drought, competition, and simulated herbivory, stable environments may promote competitive exclusion, while fluctuating environments may promote coexistence. These interactions are critical to understanding how species will respond to global change.

    View details for DOI 10.1007/s00442-016-3582-9

    View details for Web of Science ID 000376296000026

    View details for PubMedID 26893230

  • The rise and fall of infectious disease in a warmer world. F1000Research Lafferty, K. D., Mordecai, E. A. 2016; 5


    Now-outdated estimates proposed that climate change should have increased the number of people at risk of malaria, yet malaria and several other infectious diseases have declined. Although some diseases have increased as the climate has warmed, evidence for widespread climate-driven disease expansion has not materialized, despite increased research attention. Biological responses to warming depend on the non-linear relationships between physiological performance and temperature, called the thermal response curve. This leads performance to rise and fall with temperature. Under climate change, host species and their associated parasites face extinction if they cannot either thermoregulate or adapt by shifting phenology or geographic range. Climate change might also affect disease transmission through increases or decreases in host susceptibility and infective stage (and vector) production, longevity, and pathology. Many other factors drive disease transmission, especially economics, and some change in time along with temperature, making it hard to distinguish whether temperature drives disease or just correlates with disease drivers. Although it is difficult to predict how climate change will affect infectious disease, an ecological approach can help meet the challenge.

    View details for DOI 10.12688/f1000research.8766.1

    View details for PubMedID 27610227

  • Within-Host Niche Differences and Fitness Trade-offs Promote Coexistence of Plant Viruses AMERICAN NATURALIST Mordecai, E. A., Gross, K., Mitchell, C. E. 2016; 187 (1): E13-E26

    View details for DOI 10.1086/684114

    View details for Web of Science ID 000368559300002

  • Mapping Physiological Suitability Limits for Malaria in Africa Under Climate Change VECTOR-BORNE AND ZOONOTIC DISEASES Ryan, S. J., McNally, A., Johnson, L. R., Mordecai, E. A., Ben-Horin, T., Paaijmans, K., Lafferty, K. D. 2015; 15 (12): 718-725

    View details for DOI 10.1089/vbz.2015.1822

    View details for Web of Science ID 000366723800002

    View details for PubMedID 26579951

  • Controls over native perennial grass exclusion and persistence in California grasslands invaded by annuals ECOLOGY Mordecai, E. A., Molinari, N. A., Stahlheber, K. A., Gross, K., D'Antonio, C. 2015; 96 (10): 2643-2652

    View details for DOI 10.1890/

    View details for Web of Science ID 000362853600009

    View details for PubMedID 26649386

  • Differential Impacts of Virus Diversity on Biomass Production of a Native and an Exotic Grass Host PLOS ONE Mordecai, E. A., Hindenlang, M., Mitchell, C. E. 2015; 10 (7)


    Pathogens are common and diverse in natural communities and have been implicated in the success of host invasions. Yet few studies have experimentally measured how pathogens impact native versus exotic hosts, particularly when individual hosts are simultaneously coinfected by diverse pathogens. To estimate effects of interactions among multiple pathogens within host individuals on both transmission of pathogens and fitness consequences for hosts, we conducted a greenhouse experiment using California grassland species: the native perennial grass Nassella (Stipa) pulchra, the exotic annual grass Bromus hordeaceus, and three virus species, Barley yellow dwarf virus-PAV, Barley yellow dwarf virus-MAV, and Cereal yellow dwarf virus-RPV. In terms of virus transmission, the native host was less susceptible than the exotic host to MAV. Coinfection of PAV and MAV did not occur in any of the 157 co-inoculated native host plants. In the exotic host, PAV infection most strongly reduced root and shoot biomass, and coinfections that included PAV severely reduced biomass. Infection with single or multiple viruses did not affect biomass in the native host. However, in this species the most potentially pathogenic coinfections (PAV + MAV and PAV + MAV + RPV) did not occur. Together, these results suggest that interactions among multiple pathogens can have important consequences for host health, which may not be predictable from interactions between hosts and individual pathogens. This work addresses a key empirical gap in understanding the impact of multiple generalist pathogens on competing host species, with potential implications for population and community dynamics of native and exotic species. It also demonstrates how pathogens with relatively mild impacts independently can more substantially reduce host performance in coinfection.

    View details for DOI 10.1371/journal.pone.0134355

    View details for Web of Science ID 000358838400105

    View details for PubMedID 26230720

  • Pathogen impacts on plant diversity in variable environments OIKOS Mordecai, E. A. 2015; 124 (4): 414-420

    View details for DOI 10.1111/oik.01328

    View details for Web of Science ID 000352240500004

  • The community ecology of pathogens: coinfection, coexistence and community composition ECOLOGY LETTERS Seabloom, E. W., Borer, E. T., Gross, K., Kendig, A. E., Lacroix, C., Mitchell, C. E., Mordecai, E. A., Power, A. G. 2015; 18 (4): 401-415


    Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology.

    View details for DOI 10.1111/ele.12418

    View details for Web of Science ID 000351619500009

    View details for PubMedID 25728488

  • Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach ECOLOGY Johnson, L. R., Ben-Horin, T., Lafferty, K. D., McNally, A., Mordecai, E., Paaijmans, K. P., Pawar, S., Ryan, S. J. 2015; 96 (1): 203-213


    Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0. However, understanding the mechanisms linking R0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this, we show how a Bayesian approach can help identify critical uncertainties in components of R0 and how this uncertainty is propagated into the estimate of R0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15 degrees C to 25 degrees C; fecundity across all temperatures, but especially approximately 25-32 degrees C; mortality from 20 degrees C to 30 degrees C; parasite development rate at degrees 15-16 degrees C and again at approximately 33-35 degrees C. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.

    View details for DOI 10.1890/13-1964.1

    View details for Web of Science ID 000349198900023

    View details for PubMedID 26236905

  • Despite spillover, a shared pathogen promotes native plant persistence in a cheatgrass-invaded grassland ECOLOGY Mordecai, E. A. 2013; 94 (12): 2744-2753


    How pathogen spillover influences host community diversity and composition is poorly understood. Spillover occurs when transmission from a reservoir host species drives infection in another host species. In cheatgrass-invaded grasslands in the western United States, a fungal seed pathogen, black fingers of death (Pyrenophora semeniperda), spills over from exotic cheatgrass (Bromus tectorum) to native perennial bunchgrasses such as squirreltail (Elymus elymoides). Previous theoretical work based on this system predicts that pathogens that spill over can favor either host coexistence, the exclusion of either host species, or priority effects, depending on species-specific transmission rates and pathogen tolerance. Here, these model predictions were tested by parameterizing a population growth model with field data from Skull Valley, Utah, USA. The model suggests that, across the observed range of demographic variation, the pathogen is most likely to provide a net benefit to squirreltail and a net cost to cheatgrass, though both effects are relatively weak. Although cheatgrass (the reservoir host) is more tolerant, squirreltail is far less susceptible to infection, and its long-lived adult stage buffers population growth against seed losses to the pathogen. This work shows that, despite pathogen spillover, the shared pathogen promotes native grass persistence by reducing exotic grass competition. Counterintuitively, the reservoir host does not necessarily benefit from the presence of the pathogen, and may even suffer greater costs than the nonreservoir host. Understanding the consequences of shared pathogens for host communities requires weighing species differences in susceptibility, transmission, and tolerance using quantitative models.

    View details for DOI 10.1890/13-0086.1

    View details for Web of Science ID 000328928300009

    View details for PubMedID 24597221

  • Consequences of Pathogen Spillover for Cheatgrass-Invaded Grasslands: Coexistence, Competitive Exclusion, or Priority Effects AMERICAN NATURALIST Mordecai, E. A. 2013; 181 (6): 737-747


    With the rise in species invasions and emerging infectious diseases, pathogen spillover from abundant reservoir hosts to their competitors is increasingly common. Although the potential for pathogen spillover is widespread, its consequences for host community composition remain poorly understood. To address this gap, I examine the consequences of fungal seed pathogen spillover from an exotic annual grass (cheatgrass) to a native perennial bunchgrass in the Intermountain West, United States, using a model. Integrating generalist pathogens with broader coexistence theory, the model measures the pathogen's effect on host niche differences and fitness differences, which determine the outcome of competition. The model demonstrates that the consequences of pathogen spillover depend on host differences in species-specific transmission and disease tolerance. Counterintuitively, spillover can lead to coexistence, native grass exclusion, or priority effects, in which either species can exclude the other when initially more dominant. Cheatgrass has higher tolerance for infection, which could lead to competitive dominance or to coexistence if the native grass has a fecundity or survival advantage. In sum, multihost pathogens can affect host communities in a range of ways, depending on the specific mechanism of spillover.

    View details for DOI 10.1086/670190

    View details for Web of Science ID 000318996500004

    View details for PubMedID 23669537

  • Optimal temperature for malaria transmission is dramatically lower than previously predicted ECOLOGY LETTERS Mordecai, E. A., Paaijmans, K. P., Johnson, L. R., Balzer, C., Ben-Horin, T., Moor, E., McNally, A., Pawar, S., Ryan, S. J., Smith, T. C., Lafferty, K. D. 2013; 16 (1): 22-30


    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

    View details for DOI 10.1111/ele.12015

    View details for Web of Science ID 000312301300003

    View details for PubMedID 23050931

  • Soil Moisture and Fungi Affect Seed Survival in California Grassland Annual Plants PLOS ONE Mordecai, E. A. 2012; 7 (6)


    Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival.

    View details for DOI 10.1371/journal.pone.0039083

    View details for Web of Science ID 000305340000065

    View details for PubMedID 22720037

  • Pathogen impacts on plant communities: unifying theory, concepts, and empirical work ECOLOGICAL MONOGRAPHS Mordecai, E. A. 2011; 81 (3): 429-441
  • Competition-defense tradeoffs and the maintenance of plant diversity PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Viola, D. V., Mordecai, E. A., Jaramillo, A. G., Sistla, S. A., Albertson, L. K., Gosnell, J. S., Cardinale, B. J., Levine, J. M. 2010; 107 (40): 17217-17222


    Ecologists have long observed that consumers can maintain species diversity in communities of their prey. Many theories of how consumers mediate diversity invoke a tradeoff between species' competitive ability and their ability to withstand predation. Under this constraint, the best competitors are also most susceptible to consumers, preventing them from excluding other species. However, empirical evidence for competition-defense tradeoffs is limited and, as such, the mechanisms by which consumers regulate diversity remain uncertain. We performed a meta-analysis of 36 studies to evaluate the prevalence of the competition-defense tradeoff and its role in maintaining diversity in plant communities. We quantified species' responses to experimental resource addition and consumer removal as estimates of competitive ability and resistance to consumers, respectively. With this analysis, we found mixed empirical evidence for a competition-defense tradeoff; in fact, competitive ability tended to be weakly positively correlated with defense overall. However, when present, negative relationships between competitive ability and defense influenced species diversity in the manner predicted by theory. In the minority of communities for which a tradeoff was detected, species evenness was higher, and resource addition and consumer removal reduced diversity. Our analysis reframes the commonly held notion that consumers structure plant communities through a competition-defense tradeoff. Such a tradeoff can maintain diversity when present, but negative correlations between competitive ability and defense were less common than is often assumed. In this respect, this study supports an emerging theoretical paradigm in which predation interacts with competition to both enhance and reduce species diversity.

    View details for DOI 10.1073/pnas.1007745107

    View details for Web of Science ID 000282512000032

    View details for PubMedID 20855605

  • Soil moisture mediated interaction between Polygonatum biflorum and leaf spot disease PLANT ECOLOGY Warren, R. J., Mordecai, E. 2010; 209 (1): 1-9
  • Parasites in food webs: the ultimate missing links ECOLOGY LETTERS Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., De Leo, G., Dobson, A. P., Dunne, J. A., Johnson, P. T., Kuris, A. M., Marcogliese, D. J., Martinez, N. D., Memmott, J., Marquet, P. A., McLaughlin, J. P., Mordecai, E. A., Pascual, M., Poulin, R., Thieltges, D. W. 2008; 11 (6): 533-546


    Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.

    View details for DOI 10.1111/j.1461-0248.2008.01174.x

    View details for Web of Science ID 000255552100001

    View details for PubMedID 18462196