Bio-X


Showing 21-40 of 53 Results

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Butrus Khuri-Yakub

    Butrus Khuri-Yakub

    Professor (Research) of Electrical Engineering, Emeritus

    BioButrus (Pierre) T. Khuri-Yakub is a Professor of Electrical Engineering at Stanford University. He received the BS degree from the American University of Beirut, the MS degree from Dartmouth College, and the Ph.D. degree from Stanford University, all in electrical engineering. His current research interests include medical ultrasound imaging and therapy, ultrasound neuro-stimulation, chemical/biological sensors, gas flow and energy flow sensing, micromachined ultrasonic transducers, and ultrasonic fluid ejectors. He has authored over 600 publications and has been principal inventor or co-inventor of 107 US and international issued patents. He was awarded the Medal of the City of Bordeaux in 1983 for his contributions to Nondestructive Evaluation, the Distinguished Advisor Award of the School of Engineering at Stanford University in 1987, the Distinguished Lecturer Award of the IEEE UFFC society in 1999, a Stanford University Outstanding Inventor Award in 2004, Distinguished Alumnus Award of the School of Engineering of the American University of Beirut in 2005, Stanford Biodesign Certificate of Appreciation for commitment to educate, mentor and inspire Biodesgin Fellows, 2011, and 2011 recipient of IEEE Rayleigh award.

  • Juyong Brian Kim

    Juyong Brian Kim

    Assistant Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsThe lifetime risk of developing cardiovascular disease (CVD) is determined by the genetic makeup and exposure to modifiable risk factors. The Cardiovascular Link to Environmental ActioN (CLEAN) Lab is interested in understanding how various environmental pollutants (eg. tobacco, e-cigarettes, air pollution and wildfire) interact with genes to affect the transcriptome, epigenome, and eventually disease phenotype of CVD. The current focus is to investigate how different toxic exposures can adversely remodel the vascular wall leading to increased cardiac events. We intersect human genomic discoveries with animal models of disease, in-vitro and in-vivo systems of exposure, single-cell sequencing technologies to solve these questions. Additionally, we collaborate with various members of the Stanford community to develop biomarkers that will aid with detection and prognosis of CVD. We are passionate about the need to reduce the environmental effects on health through strong advocacy and outreach.
    (http://kimlab.stanford.edu)

  • Peter S. Kim

    Peter S. Kim

    Virginia and D. K. Ludwig Professor of Biochemistry

    Current Research and Scholarly InterestsWe are studying the mechanism of viral membrane fusion and its inhibition by drugs and antibodies. We use the HIV envelope protein (gp120/gp41) as a model system. Some of our studies are aimed at creating an HIV vaccine. We are also characterizing protein surfaces that are referred to as "non-druggable". These surfaces are defined empirically based on failure to identify small, drug-like molecules that bind to them with high affinity and specificity.

  • Seung K. Kim  M.D., Ph.D.

    Seung K. Kim M.D., Ph.D.

    Professor of Developmental Biology and, by courtesy, of Medicine (Endocrinology) and of Pediatrics (Endocrinology)

    Current Research and Scholarly InterestsWe study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.

  • David Kingsley

    David Kingsley

    Rudy J. and Daphne Donohue Munzer Professor in the School of Medicine

    Current Research and Scholarly InterestsWe use mice, stickleback fish, and humans to study the molecular basis of evolution and common diseases. By combining genetics and genomics, we have identified key DNA changes that control bone formation, limb patterning, hair color, brain evolution, and susceptibility to arthritis, schizophrenia, and bipolar disorder. We find that the same genetic mechanisms are often used repeatedly in nature, providing new insights into the origin of key traits in many different species, including ourselves.

  • Karla Kirkegaard

    Karla Kirkegaard

    Violetta L. Horton Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.

  • Peter K. Kitanidis

    Peter K. Kitanidis

    Professor of Civil and Environmental Engineering
    On Partial Leave from 10/01/2021 To 03/31/2022

    BioKitanidis develops methods for the solution of interpolation and inverse problems utilizing observations and mathematical models of flow and transport. He studies dilution and mixing of soluble substances in heterogeneous geologic formations, issues of scale in mass transport in heterogeneous porous media, and techniques to speed up the decay of pollutants in situ. He also develops methods for hydrologic forecasting and the optimization of sampling and control strategies.

  • Joshua W. Knowles

    Joshua W. Knowles

    Assistant Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsGenetic basis of coronary disease
    Genetic basis of insulin resistance
    Familial Hypercholesterolemia (FH)

  • Juliet Klasing Knowles

    Juliet Klasing Knowles

    Assistant Professor of Neurology and of Pediatrics

    Current Research and Scholarly InterestsThe Knowles lab studies how white matter structure changes in different forms of epilepsy, and how aberrant white matter structure, in turn, shapes neuronal network function. In mouse models, we use a variety of innovative tools including neurophysiology, quantitative EEG, behavior, histological measures of white matter structure and MR imaging. We also conduct clinical research to study white matter abnormalities in children with epilepsy.

  • Susan Knox

    Susan Knox

    Associate Professor of Radiation Oncology, Emerita

    Current Research and Scholarly InterestsOur interests include 1) study of the effect of radiation on regulatory cell subpopulations and co-stimulatory molecules, 2) use of radiation as an immune modulator for optimization of transplant regimens, 3) the role of radiation in tumor vaccine strategies, 4) study of new radiosensitizers and radioprotectors, and 5) discovery of new targeted therapies for the treatment of solid tumors.

  • Eric I. Knudsen

    Eric I. Knudsen

    Edward C. and Amy H. Sewall Professor in the School of Medicine, Emeritus

    Current Research and Scholarly InterestsCellular mechanisms of spatial attention and learning, studied in the central nervous system in birds, using behavioral, systems, cellular and molecular techniques.

  • Brian Knutson

    Brian Knutson

    Professor of Psychology

    Current Research and Scholarly InterestsMy lab and I seek to elucidate the neural basis of emotion (affective neuroscience), and explore implications for decision-making (neuroeconomics) and psychopathology (neurophenomics).

  • Brian Kobilka

    Brian Kobilka

    Hélène Irwin Fagan Chair of Cardiology

    Current Research and Scholarly InterestsStructure, function and physiology of adrenergic receptors.

  • Mykel Kochenderfer

    Mykel Kochenderfer

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Computer Science

    BioMykel Kochenderfer is Associate Professor of Aeronautics and Astronautics at Stanford University. Prior to joining the faculty, he was at MIT Lincoln Laboratory where he worked on airspace modeling and aircraft collision avoidance, with his early work leading to the establishment of the ACAS X program. He received a Ph.D. from the University of Edinburgh and B.S. and M.S. degrees in computer science from Stanford University. Prof. Kochenderfer is the director of the Stanford Intelligent Systems Laboratory (SISL), conducting research on advanced algorithms and analytical methods for the design of robust decision making systems. Of particular interest are systems for air traffic control, unmanned aircraft, and other aerospace applications where decisions must be made in uncertain, dynamic environments while maintaining safety and efficiency. Research at SISL focuses on efficient computational methods for deriving optimal decision strategies from high-dimensional, probabilistic problem representations. He is the author of "Decision Making under Uncertainty: Theory and Application" and "Algorithms for Optimization", both from MIT Press. He is a third generation pilot.

  • Feliks Kogan

    Feliks Kogan

    Assistant Professor (Research) of Radiology (Musculoskeletal Imaging)

    Current Research and Scholarly InterestsMy research is focused on the development and clinical translation of novel imaging techniques geared toward early detection of musculoskeletal disease. Current projects include whole-joint molecular imaging of early disease with PET-MRI, imaging of early cartilage changes in Osteoarthritis (OA) with GagCEST, rapid knee imaging and simultaneous bilateral knee MRI.

  • Eric Kool

    Eric Kool

    George A. and Hilda M. Daubert Professor of Chemistry

    Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
    • Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
    • Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation

  • Ron Kopito

    Ron Kopito

    Professor of Biology

    Current Research and Scholarly InterestsOur laboratory use state-of-the-art cell biological, genetic and systems-level approaches to understand how proteins are correctly synthesized, folded and assembled in the mammalian secretory pathway, how errors in this process are detected and how abnormal proteins are destroyed by the ubiquitin-proteasome system.

  • Roger Kornberg

    Roger Kornberg

    Mrs. George A. Winzer Professor of Medicine

    Current Research and Scholarly InterestsWe study the regulation of transcription, the first step in gene expression. The main lines of our work are 1) reconstitution of the process with more than 50 pure proteins and mechanistic analysis, 2) structure determination of the 50 protein complex at atomic resolution, and 3) studies of chromatin remodelling, required for transcription of the DNA template in living cells