Bio-X


Showing 21-40 of 78 Results

  • Andrew J. Mannix

    Andrew J. Mannix

    Assistant Professor of Materials Science and Engineering

    Current Research and Scholarly InterestsAtomically thin 2D materials incorporated into van der Waals heterostructures are a promising platform to deterministically engineer quantum materials with atomically resolved thickness and abrupt interfaces across macroscopic length scales while retaining excellent material properties. Because 2D materials exhibit a wide range of electronic characteristics with properties that often rival conventional electronic materials — e.g., metals, semiconductors, insulators, and superconductors — it is possible to combine them in virtually infinite variety to achieve diverse heterostructures. Furthermore, the van der Waals interface enables interlayer twist engineering to modify the interlayer symmetry, periodic potential (moiré superlattice), and hybridization, which has resulted in novel quantum states of matter. Many of these heterostructures, especially those involving specific interlayer twist angles, would be otherwise infeasible through direct growth.

    The Mannix Group is developing a unique set of in-house capabilities to systematically elucidate the fundamental structure-property relationships underpinning the growth of 2D materials and their inclusion into van der Waals heterostructures. Greater understanding will allow us to provide a platform for engineering the properties of matter at the atomic scale and offer guidance for emerging applications in novel electronics and in quantum information science.

    To accomplish this, we employ: precise growth techniques such as chemical vapor deposition and molecular beam epitaxy; automated van der Waals assembly; and atomically-resolved microscopy including cryo-STM/AFM.

  • M. Peter Marinkovich, MD

    M. Peter Marinkovich, MD

    Associate Professor of Dermatology

    Current Research and Scholarly InterestsThe Marinkovich lab studies the function of epithelial extracellular matrix molecules, including integrins, collagens and laminins in epithelial development and carcinoma progression. We apply our discoveries in this area towards development of molecular therapies for carcinomas, hair disease and inherited epithelial adhesive disorders.

  • Thomas Markland

    Thomas Markland

    Associate Professor of Chemistry

    Current Research and Scholarly InterestsOur research centers on problems at the interface of quantum and statistical mechanics. Particular themes that occur frequently in our research are hydrogen bonding, the interplay between structure and dynamics, systems with multiple time and length-scales and quantum mechanical effects. The applications of our methods are diverse, ranging from chemistry to biology to geology and materials science. Particular current interests include proton and electron transfer in fuel cells and enzymatic systems, atmospheric isotope separation and the control of catalytic chemical reactivity using electric fields.

    Treatment of these problems requires a range of analytic techniques as well as molecular mechanics and ab initio simulations. We are particularly interested in developing and applying methods based on the path integral formulation of quantum mechanics to include quantum fluctuations such as zero-point energy and tunneling in the dynamics of liquids and glasses. This formalism, in which a quantum mechanical particle is mapped onto a classical "ring polymer," provides an accurate and physically insightful way to calculate reaction rates, diffusion coefficients and spectra in systems containing light atoms. Our work has already provided intriguing insights in systems ranging from diffusion controlled reactions in liquids to the quantum liquid-glass transition as well as introducing methods to perform path integral calculations at near classical computational cost, expanding our ability to treat large-scale condensed phase systems.

  • Ellen Markman

    Ellen Markman

    Lewis M. Terman Professor

    BioMarkman’s research interests include the relationship between language and thought; early word learning; categorization and induction; theory of mind and pragmatics; implicit theories and conceptual change, and how theory-based explanations can be effective interventions in health domains.

  • Michael Marmor, MD

    Michael Marmor, MD

    Professor of Ophthalmology, Emeritus

    Current Research and Scholarly InterestsResearch concerns diseases of retinal function, techniques of clinical electrophysiology, and experimental studies on retinal pigment epithelial (RPE) function including fluid transport and retinal adhesiveness. Other studies consider aspects of vision and art, and ophthalmic history.
    Published over 300 journal articles, chapters, books (only selected articles listed).

  • David J. Maron

    David J. Maron

    C. F. Rehnborg Professor and Professor of Medicine (Stanford Prevention Research Center)

    Current Research and Scholarly InterestsDr. Maron is the Co-Chair and Principal Investigator of the ISCHEMIA trial, and Co-Chair of the ISCHEMIA-CKD trial. These large, international, NIH-funded studies will determine whether an initial invasive strategy of cardiac catheterization and revascularization plus optimal medical therapy will reduce cardiovascular events in patients with and without chronic kidney disease and at least moderate ischemia compared to an initial conservative strategy of optimal medical therapy alone.

  • Alison Marsden

    Alison Marsden

    Douglass M. and Nola Leishman Professor of Cardiovascular Diseases, and Professor of Pediatrics (Cardiology) and of Bioengineering

    Current Research and Scholarly InterestsThe Cardiovascular Biomechanics Computation Lab at Stanford develops novel computational methods for the study of cardiovascular disease progression, surgical methods, and medical devices. We have a particular interest in pediatric cardiology, and use virtual surgery to design novel surgical concepts for children born with heart defects.

  • Olivia Martinez

    Olivia Martinez

    Johnson and Johnson Distinguished Professor of Surgery

    Current Research and Scholarly InterestsHost-Pathogen interactions; EBV B cell lymphomas; pathways of immune evasion in the growth and survival of EBV B cell lymphomas; mechanisms of graft rejection and tolerance induction; stem cell and solid organ transplantation.

  • Todd Martinez

    Todd Martinez

    David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science

    Current Research and Scholarly InterestsAb initio molecular dynamics, photochemistry, molecular design, mechanochemistry, graphical processing unit acceleration of electronic structure and molecular dynamics, automated reaction discovery, ultrafast (femtosecond and attosecond) chemical phenomena

  • Tarik F. Massoud, MD, PhD

    Tarik F. Massoud, MD, PhD

    Professor of Radiology (Neuroimaging and Neurointervention)

    Current Research and Scholarly InterestsMy current interests are in molecular and translational imaging of the brain especially in neuro-oncology and cerebrovascular diseases, experimental aspects of neuroimaging, clinical neuroradiology, neuroradiological anatomy, and research education and academic training of radiologists and scientists.

  • AC Matin

    AC Matin

    Professor of Microbiology and Immunology, Emeritus

    Current Research and Scholarly Interests1. Improvement of our newly discovered cancer prodrug regimen that permits noninvaisve visualization of drug activation. 2. Tracking tumors & cancer metastases using bacterial magnetite and newly developed single-cell tracking by MRI. 3. Molecular basis of bacterial planktonic and biofilm antibiotic resistance on Earth and under space microgravity -- development of new countermeasures; 4. Bioremediation.

  • Michaëlle Ntala Mayalu

    Michaëlle Ntala Mayalu

    Assistant Professor of Mechanical Engineering

    BioDr. Michaëlle N. Mayalu is an Assistant Professor of Mechanical Engineering. She received her Ph.D., M.S., and B.S., degrees in Mechanical Engineering at the Massachusetts Institute of Technology. She was a postdoctoral scholar at the California Institute of Technology in the Computing and Mathematical Sciences Department. She was a 2017 California Alliance Postdoctoral Fellowship Program recipient and a 2019 Burroughs Wellcome Fund Postdoctoral Enrichment Program award recipient.

    Dr. Michaëlle N. Mayalu's area of expertise is in mathematical modeling and control theory of synthetic biological and biomedical systems. She is interested in the development of control theoretic tools for understanding, controlling, and predicting biological function at the molecular, cellular, and organismal levels to optimize therapeutic intervention.

    She is the director of the Mayalu Lab whose research objective is to investigate how to optimize biomedical therapeutic designs using theoretical and computational approaches coupled with experiments. Initial project concepts include: i) theoretical and experimental design of bacterial "microrobots" for preemptive and targeted therapeutic intervention, ii) system-level multi-scale modeling of gut associated skin disorders for virtual evaluation and optimization of therapy, iii) theoretical and experimental design of "microrobotic" swarms of engineered bacteria with sophisticated centralized and decentralized control schemes to explore possible mechanisms of pattern formation. The experimental projects in the Mayalu Lab utilize established techniques borrowed from the field of synthetic biology to develop synthetic genetic circuits in E. coli to make bacterial "microrobots". Ultimately the Mayalu Lab aims to develop accurate and efficient modeling frameworks that incorporate computation, dynamical systems, and control theory that will become more widespread and impactful in the design of electro-mechanical and biological therapeutic machines.

  • Harley H McAdams

    Harley H McAdams

    Professor (Research) of Developmental Biology, Emeritus

    Current Research and Scholarly InterestsExperimental and theoretical analysis and modeling of genetic regulatory circuits, particularly bacterial regulation and with emphasis on global regulation of Caulobacter crescentus. Bioinformatic analysis of bacterial genomes, global patterns of gene transcription and translation.

  • Jay McClelland

    Jay McClelland

    Lucie Stern Professor in the Social Sciences and Professor, by courtesy, of Linguistics and of Computer Science

    Current Research and Scholarly InterestsMy research addresses topics in perception and decision making; learning and memory; language and reading; semantic cognition; and cognitive development. I view cognition as emerging from distributed processing activity of neural populations, with learning occurring through the adaptation of connections among neurons. A new focus of research in the laboratory is mathematical cognition, with an emphasis on the learning and representation of mathematical concepts and relationships.

  • Michael V. McConnell, MD, MSEE

    Michael V. McConnell, MD, MSEE

    Clinical Professor, Medicine - Cardiovascular Medicine

    Current Research and Scholarly InterestsMy imaging research has involved clinical and molecular Imaging of cardiovascular disease, with a focus on coronary and vascular diseases, including atherosclerosis, aortic aneurysms, and vascular inflammation.

    My prevention research has involved innovative technologies to reduce coronary and vascular disease, including early disease detection plus leveraging mobile health to enhance heart-healthy activities in patients and populations.

  • Susan K. McConnell

    Susan K. McConnell

    Susan B. Ford Professor

    Current Research and Scholarly InterestsSusan McConnell has studied the cellular and molecular mechanisms that underlie the development of the mammalian cerebral cortex. Her work focused on the earliest events that pattern the developing forebrain, enable neural progenitors to divide asymmetrically to generate young neurons, propel the migration of postmitotic neurons outward into their final positions, and sculpt the fates and phenotypes of the neurons as they differentiate.

  • Paul McIntyre

    Paul McIntyre

    Rick and Melinda Reed Professor, Professor of Photon Science and Senior Fellow at the Precourt Institute for Energy

    BioMcIntyre's group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors. He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals. His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.

  • David B. McKay

    David B. McKay

    Professor of Structural Biology, Emeritus

    Current Research and Scholarly InterestsThree-dimensional structure determination and biophysical studies of macromolecules.

  • Tracey McLaughlin

    Tracey McLaughlin

    Professor of Medicine (Endocrinology)

    Current Research and Scholarly InterestsDr. McLaughlin conducts clinical research related to obesity, insulin resistance, diabetes, and cardiovascular disease (CVD). Current studies include: 1) the impact of macronutrient composition on metabolism, DM2 and CVD; 2) comparison of different weight loss diets on metabolism and CVD risk reduction ; 3) role of adipocytes and adipose tissue immune cells in modulating insulin resistance; 4) use of continuous glucose monitoring and multi-omics to define metabolic phenotype and precision diets