Bio-X


Showing 21-40 of 74 Results

  • Thomas Markland

    Thomas Markland

    Associate Professor of Chemistry

    Current Research and Scholarly InterestsOur research centers on problems at the interface of quantum and statistical mechanics. Particular themes that occur frequently in our research are hydrogen bonding, the interplay between structure and dynamics, systems with multiple time and length-scales and quantum mechanical effects. The applications of our methods are diverse, ranging from chemistry to biology to geology and materials science. Particular current interests include proton and electron transfer in fuel cells and enzymatic systems, atmospheric isotope separation and the control of catalytic chemical reactivity using electric fields.

    Treatment of these problems requires a range of analytic techniques as well as molecular mechanics and ab initio simulations. We are particularly interested in developing and applying methods based on the path integral formulation of quantum mechanics to include quantum fluctuations such as zero-point energy and tunneling in the dynamics of liquids and glasses. This formalism, in which a quantum mechanical particle is mapped onto a classical "ring polymer," provides an accurate and physically insightful way to calculate reaction rates, diffusion coefficients and spectra in systems containing light atoms. Our work has already provided intriguing insights in systems ranging from diffusion controlled reactions in liquids to the quantum liquid-glass transition as well as introducing methods to perform path integral calculations at near classical computational cost, expanding our ability to treat large-scale condensed phase systems.

  • Ellen Markman

    Ellen Markman

    Lewis M. Terman Professor
    On Leave from 10/01/2021 To 12/31/2021

    BioMarkman’s research interests include the relationship between language and thought; early word learning; categorization and induction; theory of mind and pragmatics; implicit theories and conceptual change, and how theory-based explanations can be effective interventions in health domains.

  • Michael Marmor, MD

    Michael Marmor, MD

    Professor of Ophthalmology, Emeritus

    Current Research and Scholarly InterestsResearch concerns diseases of retinal function, techniques of clinical electrophysiology, and experimental studies on retinal pigment epithelial (RPE) function including fluid transport and retinal adhesiveness. Other studies consider aspects of vision and art, and ophthalmic history.
    Published over 300 journal articles, chapters, books (only selected articles listed).

  • Alison Marsden

    Alison Marsden

    Professor of Pediatrics (Cardiology) and of Bioengineering

    Current Research and Scholarly InterestsThe Cardiovascular Biomechanics Computation Lab at Stanford develops novel computational methods for the study of cardiovascular disease progression, surgical methods, and medical devices. We have a particular interest in pediatric cardiology, and use virtual surgery to design novel surgical concepts for children born with heart defects.

  • Olivia Martinez

    Olivia Martinez

    Professor of Surgery (Abdominal Transplantation)

    Current Research and Scholarly InterestsHost-Pathogen interactions; EBV B cell lymphomas; pathways of immune evasion in the growth and survival of EBV B cell lymphomas; mechanisms of graft rejection and tolerance induction; stem cell and solid organ transplantation.

  • Todd Martinez

    Todd Martinez

    David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science

    BioTheoretical chemist Todd Martínez develops and applies new methods that predict and explain how atoms move in molecules. These methods are used both to design new molecules and to understand the behavior of those that already exist. His research group studies the response of molecules to light (photochemistry) and external force (mechanochemistry). Photochemistry is a critical part of human vision, single-molecule spectroscopy, harnessing solar energy (either to make fuels or electricity), and even organic synthesis. Mechanochemistry represents a novel scheme to promote unusual reactions and potentially to create self-healing materials that resist degradation. The underlying tools embody the full gamut of quantum mechanical effects governing molecules, from chemical bond breaking/formation to electron/proton transfer and electronic excited states.

    Professor Martínez was born in Amityville, New York, but spent most of his childhood in Central America and the Caribbean. His chemical curiosity benefitted tremendously from the relaxed safety standards in Central American chemical supply houses, giving him unfettered access to strong acids and bases. When he also became interested in computation, limited or nonexistent computer access forced him to write and debug computer programs on paper. Today, Prof. Martínez combines these interests by working toward theoretical and computational modeling and design of molecules. Martínez received his PhD in chemistry from UCLA in 1994. After postdoctoral study at UCLA and the Hebrew University in Jerusalem, he joined the faculty at the University of Illinois in 1996. In 2009, he joined the faculty at Stanford, where he is now the Ehrsam and Franklin Professor of Chemistry and Professor of Photon Science at SLAC National Accelerator Laboratory. He has received numerous awards for his contributions, including a MacArthur Fellowship (commonly known as the “genius award”). He is co-editor of Annual Reviews in Physical Chemistry, associate editor of The Journal of Chemical Physics, and an elected fellow of the American Academy of Arts and Sciences.

    Current research in the Martínez lab aims to make molecular modeling both predictive and routine. New approaches to interactive molecular simulation are being developed, in which users interact with a virtual-reality based molecular modeling kit that fully understands quantum mechanics. New techniques to discover heretofore unknown chemical reactions are being developed and tested, exploiting the many efficient methods that the Martínez group has introduced for solving quantum mechanical problems quickly, using a combination of physical/chemical insights and commodity videogaming hardware. For more details, please visit http://mtzweb.stanford.edu.

  • Tarik F. Massoud, MD, PhD

    Tarik F. Massoud, MD, PhD

    Professor of Radiology (Neuroimaging and Neurointervention)

    Current Research and Scholarly InterestsMy current interests are in molecular and translational imaging of the brain especially in neuro-oncology and cerebrovascular diseases, experimental aspects of neuroimaging, clinical neuroradiology, neuroradiological anatomy, and research education and academic training of radiologists and scientists.

  • AC Matin

    AC Matin

    Professor of Microbiology and Immunology, Emeritus

    Current Research and Scholarly Interests1. Improvement of our newly discovered cancer prodrug regimen that permits noninvaisve visualization of drug activation. 2. Tracking tumors & cancer metastases using bacterial magnetite and newly developed single-cell tracking by MRI. 3. Molecular basis of bacterial planktonic and biofilm antibiotic resistance on Earth and under space microgravity -- development of new countermeasures; 4. Bioremediation.

  • Harley H McAdams

    Harley H McAdams

    Professor (Research) of Developmental Biology, Emeritus

    Current Research and Scholarly InterestsExperimental and theoretical analysis and modeling of genetic regulatory circuits, particularly bacterial regulation and with emphasis on global regulation of Caulobacter crescentus. Bioinformatic analysis of bacterial genomes, global patterns of gene transcription and translation.

  • Jay McClelland

    Jay McClelland

    Lucie Stern Professor in the Social Sciences and Professor, by courtesy, of Linguistics and of Computer Science

    Current Research and Scholarly InterestsMy research addresses topics in perception and decision making; learning and memory; language and reading; semantic cognition; and cognitive development. I view cognition as emerging from distributed processing activity of neural populations, with learning occurring through the adaptation of connections among neurons. A new focus of research in the laboratory is mathematical cognition, with an emphasis on the learning and representation of mathematical concepts and relationships.

  • Michael V. McConnell, MD, MSEE

    Michael V. McConnell, MD, MSEE

    Clinical Professor, Medicine - Cardiovascular Medicine

    Current Research and Scholarly InterestsMy imaging research has involved clinical and molecular Imaging of cardiovascular disease, with a focus on coronary and vascular diseases, including atherosclerosis, aortic aneurysms, and vascular inflammation.

    My prevention research has involved innovative technologies to reduce coronary and vascular disease, including early disease detection plus leveraging mobile health to enhance heart-healthy activities in patients and populations.

  • Susan K. McConnell

    Susan K. McConnell

    Susan B. Ford Professor

    Current Research and Scholarly InterestsSusan McConnell has studied the cellular and molecular mechanisms that underlie the development of the mammalian cerebral cortex. Her work focused on the earliest events that pattern the developing forebrain, enable neural progenitors to divide asymmetrically to generate young neurons, propel the migration of postmitotic neurons outward into their final positions, and sculpt the fates and phenotypes of the neurons as they differentiate.

  • Paul McIntyre

    Paul McIntyre

    Rick and Melinda Reed Professor, Professor of Photon Science and Senior Fellow at the Precourt Institute for Energy

    BioMcIntyre's group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors. He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals. His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.

  • David B. McKay

    David B. McKay

    Professor of Structural Biology, Emeritus

    Current Research and Scholarly InterestsThree-dimensional structure determination and biophysical studies of macromolecules.

  • Tracey McLaughlin

    Tracey McLaughlin

    Professor of Medicine (Endocrinology)

    Current Research and Scholarly InterestsDr. McLaughlin conducts clinical research related to obesity, insulin resistance, diabetes, and cardiovascular disease (CVD). Current studies include: 1) the impact of macronutrient composition on metabolism, DM2 and CVD; 2) comparison of different weight loss diets on metabolism and CVD risk reduction ; 3) role of adipocytes and adipose tissue immune cells in modulating insulin resistance; 4) use of continuous glucose monitoring and multi-omics to define metabolic phenotype and precision diets

  • Uel Jackson McMahan

    Uel Jackson McMahan

    Professor of Neurobiology and of Structural Biology, Emeritus

    Current Research and Scholarly InterestsWe are currently investigating mechanisms involved in synaptic transmission and synaptogenesis using electron microscope tomography in ways that provide in situ 3D structural information at macromolecular resolution.

  • Jennifer A McNab

    Jennifer A McNab

    Associate Professor (Research) of Radiology (Radiological Sciences Laboratory)

    Current Research and Scholarly InterestsMy research is focused on developing magnetic resonance imaging (MRI) methods that probe brain tissue microstructure. This requires new MRI contrast mechanisms, strategic encoding and reconstruction schemes, physiological monitoring, brain tissue modeling and validation. Applications of these methods include neuronavigation, neurosurgical planning and the development of improved biomarkers for brain development, degeneration, disease and injury.

  • Kimford Meador, MD

    Kimford Meador, MD

    Professor of Neurology

    BioDr. Meador is a Professor of Neurology and Neurosciences at Stanford University, and Clinical Director, Stanford Comprehensive Epilepsy Center. Dr. Meador graduated from the Georgia Institute of Technology in Applied Biology (with high honor) and received his MD from the Medical College of Georgia. After an internship at the University of Virginia and service as an officer in the Public Health Corps, he completed a residency in Neurology at the Medical College of Georgia and a fellowship in Behavioral Neurology at the University of Florida. Dr. Meador joined the faculty at the Medical College of Georgia (1984-2002) where he became the Charbonnier Professor of Neurology. He was the Chair of Neurology at Georgetown University (2002-2004), the Melvin Greer Professor of Neurology and Neuroscience at the University of Florida (2004-2008) where he served as Director of Epilepsy Program and Director of the Clinical Alzheimer Research Program, and Professor of Neurology and Pediatrics at Emory University (2008-2013) where he served as Director of Epilepsy and of Clinical Neurocience Research. He joined the faculty of Stanford University in 2013. Dr. Meador has authored over 400 peer-reviewed publications. His research interests include: cognitive mechanisms (e.g., memory and attention); cerebral lateralization; pharmacology and physiology of cognition; mechanisms of perception, consciousness and memory; EEG; epilepsy; epilepsy and pregnancy; preoperative evaluation for epilepsy surgery; intracarotid amobarbital procedure (i.e., Wada test); functional imaging; therapeutic drug trials; neurodevelopmental effects of antiepileptic drugs; psychoimmunology; behavioral disorders (e.g., aphasia, neglect, dementia); and neuropsychiatric disorders. Dr. Meador has served as the PI for a long running NIH multicenter study of pregnancy outcomes in women with epilepsy and their children. Dr. Meador has served on the editorial boards for Clinical Neurophysiology, Epilepsy and Behavior, Epilepsy Currents, Journal of Clinical Neurophysiology, Neurology, Cognitive and Behavioral Neurology, and Epilepsy.com. His honors include Resident Teaching Award Medical College of Georgia; Outstanding Young Faculty Award in Clinical Sciences Medical College of Georgia; Distinguished Faculty Award for Clinical Research Medical College of Georgia Lawrence C. McHenry History Award American Academy of Neurology; Dreifuss Abstract Award American Epilepsy Society; Fellow of the American Neurological Association; Diplomat of American Neurologic Association; past Chair of the Section of Behavioral Neurology of American Academy of Neurology; past President of Society for Cognitive and Behavioral Neurology; past President of the Society for Behavioral & Cognitive Neurology; past President of the Southern EEG & Epilepsy Society; ranking in the top 10 experts in epilepsy worldwide by Expertscape; Distinguished Alumnus Award for Professional Achievement, Medical College of Georgia, Georgia Regents University 2015; American Epilepsy Society Clinical Research Award; and named award by the American Epilepsy Society: “Kimford J. Meador Research in Women with Epilepsy Award.”

  • Elizabeth Mellins

    Elizabeth Mellins

    Professor of Pediatrics (Human Gene Therapy)

    Current Research and Scholarly InterestsMolecular mechanisms and intracellular pathways of antigen processing and presentation; structure/function of HLA-DR,-DM, -DO; mechanisms underlying HLA allele association with disease; disease mechanisms in systemic idiopathic juveile arthritis, recently found to be an HLA-linked disease.