Bio-X


Showing 701-720 of 956 Results

  • Lawrence Recht, MD

    Lawrence Recht, MD

    Professor of Neurology and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsOur laboratory focuses on two interrelated projects: (1) assessment of glioma development within the framework of the multistage model of carcinogenesis through utilization of the rodent model of ENU neurocarcinogenesis; and (2) assessment of stem cell specification and pluripotency using an embryonic stem cell model system in which neural differentiation is induced.

  • Kristy Red-Horse

    Kristy Red-Horse

    Associate Professor of Biology

    Current Research and Scholarly InterestsCardiovascular developmental biology

  • Evan Reed

    Evan Reed

    Associate Professor of Materials Science and Engineering

    BioWe are engaged in theory and modeling of materials at the atomic scale. Our recent work has two primary directions:

    1. Monolayer and few layer materials (i.e. graphene, MoS2) for electronics, NEMS, and energy applications.
    2. Materials at conditions of high temperature, electromagnetic fields, and pressures, including dynamic or shock compression.

    Recent research topics include piezoelectricity and phase change effects in monolayer materials. Past topics include THz radiation generation, energetic materials, and photonic crystals. We develop and utilize computational tools (molecular dynamics statistical methods, electronic structure, materials informatics approaches, etc.) and interact closely with experimentalists.

  • David Rehkopf

    David Rehkopf

    Associate Professor of Epidemiology and Population Health, of Medicine (Primary Care and Population Health) and, by courtesy, of Sociology

    BioI am a social epidemiologist and serve as an Associate Professor in the Department of Epidemiology and Population Health and in the Department of Medicine in the Division of Primary Care and Population Health. I joined the faculty at Stanford School of Medicine in 2011.

    I am currently the co-director of the Stanford Center for Population Health Sciences. In this position I am committed to making high value data resources available to researchers across disciplines in order to better enable them to answer their most pressing clinical and population health questions.

    My own research is focused on understanding the health implications of the myriad decisions that are made by corporations and governments every day - decisions that profoundly shape the social and economic worlds in which we live and work. While these changes are often invisible to us on a daily basis, these seemingly minor actions and decisions form structural nudges that can create better or worse health at a population level. My work demonstrates the health implications of corporate and governmental decisions that can give the public and policy makers evidence to support new strategies for promoting health and well-being. In all of his work, I have a focus on the implications of these exposures for health inequalities.

    Since often policy and programmatic changes can take decades to influence health, my work also includes more basic research in understanding biological signals that may act as early warning signs of systemic disease, in particular accelerated aging. I examine how social and economic policy changes influence a range of early markers of disease and aging, with a particular recent focus on DNA methylation. I am supported by several grants from the National Institute on Aging and the National Institute on Minority Health and Health Disparities to develop new more sensitive ways to understand the health implications of social and economic policy changes.

  • Richard J. Reimer, MD

    Richard J. Reimer, MD

    Associate Professor of Neurology and, by courtesy, of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsReimer Lab interests

    A primary interest of our lab is to understand how nerve cells make and recycle neurotransmitters, the small molecules that they use to communicate with each other. In better defining these processes we hope to achieve our long-term goal of identifying novel sites for treatment of diseases such as epilepsy and Parkinson Disease. In our studies on neurotransmitter metabolism we have focused our efforts on transporters, a functional class of proteins that move neurotransmitters and other small molecules across membranes in cells. Transporters have many characteristics that make them excellent pharmacological targets, and not surprisingly some of the most effective treatments for neuropsychiatric disorders are directed at transporters. We are specifically focusing on two groups of transporters – vesicular neurotransmitter transporters that package neurotransmitters into vesicles for release, and glutamine transporters that shuttle glutamine, a precursor for two major neurotransmitters glutamate and GABA, to neurons from glia, the supporting cells that surround them. We are pursuing these goals through molecular and biochemical studies, and, in collaboration with the Huguenard and Prince labs, through physiological and biosensor based imaging studies to better understand how pharmacological targeting of these molecules will influence neurological disorders.

    A second interest of our lab is to define mechanism underlying the pathology of lysosomal storage disorders. Lysosomes are membrane bound acidic intracellular organelles filled with hydrolytic enzymes that normally function as recycling centers within cells by breaking down damaged cellular macromolecules. Several degenerative diseases designated as lysosomal storage disorders (LSDs) are associated with the accumulation of material within lysosomes. Tay-Sachs disease, Neimann-Pick disease and Gaucher disease are some of the more common LSDs. For reasons that remain incompletely understood, these diseases often affect the nervous system out of proportion to other organs. As a model for LSDs we are studying the lysosomal free sialic acid storage disorders. These diseases are the result of a defect in transport of sialic acid across lysosomal membranes and are associated with mutations in the gene encoding the sialic acid transporter sialin. We are using molecular, genetic and biochemical approaches to better define the normal function of sialin and to determine how loss of sialin function leads to neurodevelopmental defects and neurodegeneration associated with the lysosomal free sialic acid storage disorders.

  • Allan L. Reiss

    Allan L. Reiss

    Howard C. Robbins Professor of Psychiatry and Behavioral Sciences and Professor of Radiology

    Current Research and Scholarly InterestsMy laboratory, the Center for Interdisciplinary Brain Sciences Research (CIBSR), focuses on multi-level scientific study of individuals with typical and atypical brain structure and function. Data are obtained from genetic analyses, structural and functional neuroimaging studies, assessment of endocrinological status, neurobehavioral assessment, and analysis of pertinent environmental factors. Our overarching focus is to model how brain disorders arise and to develop disease-specific treatments.

  • Johannes Reiter

    Johannes Reiter

    Assistant Professor of Radiology (Canary Center) and, by courtesy, of Biomedical Data Science
    On Leave from 08/30/2021 To 08/28/2022

    Current Research and Scholarly InterestsMy research focuses on the stochastic biological processes underlying cancer evolution with the goal to improve diagnosis, prognosis, and treatment of tumors. I develop computational methods and design mathematical models to generate novel hypotheses and explain observations on a mechanistic level.

  • David A. Relman

    David A. Relman

    Thomas C. and Joan M. Merigan Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsMy investigative program focuses on human-microbe interactions and human microbial ecology, and primarily concerns the ecology of human indigenous microbial communities; a secondary interest concerns the classification of humans with systemic infectious diseases, based on features of genome-wide gene transcript abundance patterns and pther aspects of the host response.

  • Anthony Ricci

    Anthony Ricci

    Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor, by courtesy, of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsThe auditory sensory cell, the hair cell, detects mechanical stimulation at the atomic level and conveys information regarding frequency and intensity to the brain with high fidelity. Our interests are in identifying specializations associated with mechanotransduction and synaptic transmission leading to the amazing sensitivities of the auditory system. We are also interested in the developmental process, particularly in how development gives insight into repair and regenerative mechanisms.

  • Tawna Roberts, OD, PhD

    Tawna Roberts, OD, PhD

    Assistant Professor of Ophthalmology (Pediatric)

    Current Research and Scholarly InterestsOur research efforts are funded by grants from the National Eye Institute, Department of Defense, and various foundations to study vision development in infants and young children as well as binocular vision disorders in adolescents and adults with concussions. Our focus is to identify underlying mechanisms that will inform clinical treatment approaches and ultimately leading to the prevention of strabismus, amblyopia, and binocular vision disorders.

  • William H. Robinson, MD PhD

    William H. Robinson, MD PhD

    James W. Raitt, M.D. Professor

    Current Research and Scholarly InterestsOur lab studies the molecular mechanisms of and develops therapies to treat autoimmune and rheumatic diseases, with a focus on rheumatoid arthritis, multiple sclerosis, and osteoarthritis.

    The overriding objectives of our laboratory are:

    1. To investigate the mechanisms underlying autoimmune diseases.

    2. To develop diagnostics and therapeutics for autoimmune diseases.

    3. To investigate the role of inflammation in osteoarthritis.

  • Stephen Rock

    Stephen Rock

    Professor of Aeronautics and Astronautics

    BioProfessor Rock's research interests include the application of advanced control and modeling techniques for robotic and vehicle systems (aerospace and underwater). He directs the Aerospace Robotics Laboratory in which students are involved in experimental programs designed to extend the state-of-the-art in robotic control. Areas of emphasis include planning and navigation techniques (GPS and vision-based) for autonomous vehicles; aerodynamic modeling and control for aggressive flight systems; underwater remotely-operated vehicle control; precision end-point control of manipulators in the presence of flexibility and uncertainty; and cooperative control of multiple manipulators and multiple robots. Professor Rock teaches several courses in dynamics and control.

  • Stanley G. Rockson, MD

    Stanley G. Rockson, MD

    Allan and Tina Neill Professor of Lymphatic Research and Medicine

    Current Research and Scholarly InterestsMy clinical research includes studies on risk factor modification in atherosclerosis and coronary artery disease; clinical trials involving medical therapies for peripheral arterial insufficiency; coronary angiogenesis; therapy of lymphedema; atherand photodynamic therapy in atherosclerosis.

  • Angela Rogers

    Angela Rogers

    Associate Professor of Medicine (Pulmonary and Critical Care)

    Current Research and Scholarly InterestsWe use genetics and genomics methodologies to identify novel ARDS pathobiology; we hope that this will enable identification of novel biomarkers, phenotypes, and treatments for the disease. We are building a plasma biobank of critically ill patients at Stanford, with a particular focus on metabolic changes in critical illness.

  • Rajat Rohatgi

    Rajat Rohatgi

    Associate Professor of Biochemistry and of Medicine (Oncology)

    Current Research and Scholarly Intereststhe overall goal of my laboratory is to uncover new regulatory mechanisms in signaling systems, to understand how these mechanisms are damaged in disease states, and to devise new strategies to repair their function.

  • Maria Grazia Roncarolo

    Maria Grazia Roncarolo

    George D. Smith Professor of Stem Cell and Regenerative Medicine and Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)

    Current Research and Scholarly InterestsResearch Interests
    Immunetolerance: Mechanisms underlying T-cell tolerance, induction of T-cell anergy and regulatory T cells; Immunomodulation: mAbs, proteins and low molecular weight compounds which can modulate T-cell activation; Primary immunodeficiencies: Characterization of molecular and immunological defects; Gene therapy: Gene transduction of hematopoietic cells for gene therapy in primary immunodeficiencies and metabolic diseases; Hematopoiesis: Mechanisms underlying growth and differentiation of hematopoietic stem cells; Transplantation: Immune reconstitution and T-cell tolerance after allogenic stem cell transplantation; Cytokines/Cytokine receptors: Role in regulation of immune and inflammatory responses

    Clinical Interests
    Primary Immunodeficiencies
    Monogenic Autoimmune Disorders
    Allogenic Bone Marrow Transplantation
    Gene Therapy Clinical Trials
    Cell Therapy Clinical Trials
    Clinical Trials in Autoimmune Diseases and Organ Transplantation
    Clinical Trials in Hemoglobinopathies

  • Lisa Goldman Rosas

    Lisa Goldman Rosas

    Assistant Professor (Research) of Epidemiology and Population Health and of Medicine (Primary Care and Population Health)

    BioLisa Goldman Rosas, PhD MPH is an Assistant Professor in the Department of Epidemiology and Population Health and the Department of Medicine, Division of Primary Care and Population Health at Stanford School of Medicine. An epidemiologist by training, Dr. Goldman Rosas’ research focuses on addressing disparities in chronic diseases such as diabetes, heart disease, depression, and cancer among racial/ethnic minority families. This research features rigorous quantitative and qualitative methodologies, participatory qualitative approaches, and shared leadership with patient and community partners. She is passionate about integrating patients, caregivers, community organizations, and other key stakeholders in the research process in order to affect the greatest improvements in health and well-being. As a reflection of this passion, Dr. Goldman Rosas serves as the Faculty Director for the School of Medicine Office of Community Engagement and the Stanford Cancer Institute Community Outreach and Engagement Program. In these roles, she supports other faculty and patient and community partners to develop sustainable and meaningful partnerships to support transformative research. In addition to research, she teaches at the undergraduate and graduate levels and has a special focus on increasing diversity in biomedical research.

  • Jessica Rose

    Jessica Rose

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsDr. Rose's research investigates neuromuscular mechanisms underlying cerebral palsy (CP) early brain and motor development in preterm children and . Research examines neonatal microstructural brain development on DTI and physiological correlates of motor function in preterm children. Dr. Rose served on the NIH Taskforce on Childhood Motor Disorders, the AACPDM Research Committee and Steering Committee to develop CDE for CP neuroimaging diagnostics, and serves on the Board of Directors of SBMT.