Bio-X
Showing 741-760 of 1,081 Results
-
Karen J. Parker, PhD
Truong-Tan Broadcom Endowed Professor and Professor, by courtesy, of Comparative Medicine
Current Research and Scholarly InterestsThe Parker Lab conducts research on the biology of social functioning in monkeys, typically developing humans, and patients with social impairments.
-
Josef Parvizi, MD, PhD
Professor of Neurology and Neurological Sciences (Adult Neurology) and, by courtesy, of Neurosurgery
BioDr. Parvizi completed his medical internship at Mayo Clinic, neurology training at Harvard, and subspecialty training in clinical neurophysiology and epilepsy at UCLA before joining the Department of Neurology and Neurological Sciences at Stanford in 2007. Dr. Parvizi directs the Stanford Program for Medication Resistant Epilepsies and specializes in surgical treatments of intractable focal epilepsies. Dr. Parvizi is the principal investigator in the Laboratory of Behavioral and Cognitive Neuroscience, where he leads a team of investigators to study the human brain. http://med.stanford.edu/parvizi-lab.html.
Epilepsy patient story: https://www.youtube.com/watch?v=HXy-gXg0t94&t=3s -
Anca M. Pasca, MD
Assistant Professor of Pediatrics
Current Research and Scholarly InterestsThe research focus of the lab is to understand molecular mechanisms underlying neurodevelopmental disorders associated with premature birth, neonatal and fetal brain injury with the long-term goal of translating the lab’s findings into therapeutics. The research team employs a multidisciplinary approach involving genetics, molecular and developmental neurobiology, animal models and neural cells differentiated from patient-derived induced pluripotent stem (iPS) cells. In particular, the lab is using a powerful 3D human brain-region specific organoid system developed at Stanford (Nature Methods, 2015; Nature Protocols, 2018) to ask questions about brain injury during development.
https://www.neopascalab.org/ -
Sergiu P. Pasca
Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program
Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain. -
Zara M. Patel, MD
Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsCurrently performing research studies in Smell and Taste Disorders,Artificial Intelligence in Rhinology, Chronic Sinusitis and Endoscopic Sinus Surgery, Endoscopic Skull Base Surgery.
-
John M. Pauly
Reid Weaver Dennis Professor
BioInterests include medical imaging generally, and magnetic resonance imaging (MRI) in particular. Current efforts are focused on medical applications of MRI where real-time interactive imaging is important. Two examples are cardiac imaging, and the interactive guidance of interventional procedures. Specific interests include rapid methods for the excitation and acquisition of the MR signal, and the reconstruction of images from the data acquired using these approaches.
-
Kim Butts Pauly
Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsWe are investigating and developing, and applying focused ultrasound in neuromodulation, blood brain barrier opening, and ablation for both neuro and body applications.
-
Jonathan Payne
Dorrell William Kirby Professor, Senior Associate Dean for Faculty Affairs, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology
Current Research and Scholarly InterestsMy goal in research is to understand the interaction between environmental change and biological evolution using fossils and the sedimentary rock record. How does environmental change influence evolutionary and ecological processes? And conversely, how do evolutionary and ecological changes affect the physical environment? I work primarily on the marine fossil record over the past 550 million years.
-
Kabir Peay
Director of the Earth Systems Program, Professor of Biology, of Earth System Science and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsOur lab studies the ecological processes that structure natural communities and the links between community structure and the cycling of nutrients and energy through ecosystems. We focus primarily on fungi, as these organisms are incredibly diverse and are the primary agents of carbon and nutrient cycling in terrestrial ecosystems. By working across multiple scales we hope to build a 'roots-to-biomes' understanding of plant-microbe symbiosis.
-
Donna Peehl, PhD
Professor (Research) of Urology, Emerita
Current Research and Scholarly InterestsMy research focuses on the molecular and cellular biology of the human prostate. Developing realistic experimental models is a major goal, and primary cultures of prostatic epithelial and stromal cells are my main model system. Our discoveries are relevant to prevention, detection, diagnosis and treatment of benign and malignant prostatic diseases.
-
Mark Pegram
Susy Yuan-Huey Hung Professor
Current Research and Scholarly InterestsMolecular mechanisms of targeted therapy resistance in breast and other cancers
-
Norbert Pelc
Boston Scientific Applied Biomedical Engineering Professor and Professor of Radiology, Emeritus
Current Research and Scholarly InterestsBroadly, Dr. Pelc is interested in the physics, engineering and mathematics of medical imaging, especially computed tomography, digital x-ray imaging, magnetic resonance imaging, and hybrid multimodality systems. His current research is concentrated in the development of computed tomography systems with higher image quality and dose efficiency, in the characterization of system performance, and in the development and validation of new clinical applications.
-
Gary Peltz
Professor of Anesthesiology, Perioperative and Pain Medicine (Department Research)
Current Research and Scholarly InterestsThe laboratory develops and uses state of the art genomic methods to identify genetic factors affecting disease susceptibility, and to translate these findings into new treatments. We have developed a more efficient method for performing mouse genetic analysis, which has been used to analyze the genetic basis for 16 different biomedical traits. We are developing novel methods, and have developed a novel experimental platform that replaces mouse liver with functioning human liver tissue.
-
Jon-Paul Pepper, MD
Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsFacial paralysis is a debilitating condition that affects thousands of people. Despite excellent surgical technique, we are currently limited by the regenerative capacity of the body. The mission of our research is to identify new treatments that improve current facial paralysis treatments. We do this by exploring the regenerative cues that the body uses to restore tissue after nerve injury, in particular through pathways of neurogenesis and nerve repair in small mammals.
-
Claudia Katharina Petritsch
Associate Professor (Research) of Neurosurgery
On Partial Leave from 12/24/2024 To 10/31/2025Current Research and Scholarly InterestsThe Petritsch lab broadly investigates underlying causes for the intra-tumoral heterogeneity and immune suppression in brain tumors from a neuro-developmental perspective. Defective cell fate decisions fuel the intra-humoral heterogeneity and plasticity in human brain tumors and may contribute to immune suppression. We use patient-derived models as avatars to study how brain cells control the fate of their progeny, whereby we unravel novel points of vulnerabilities in brain tumor cells.
-
Dmitri Petrov
Michelle and Kevin Douglas Professor in the School of Humanities and Sciences
Current Research and Scholarly InterestsEvolution of genomes and population genomics of adaptation and variation
-
Suzanne Pfeffer
Emma Pfeiffer Merner Professor of Medical Sciences
Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.
-
Adolf Pfefferbaum
Professor of Psychiatry and Behavioral Sciences, Emeritus
Current Research and Scholarly InterestsDevelopment and application of magnetic resonance imaging approaches for in vivo studies of human and animal brain integrity in neurodegenerative conditions, including alcoholism, HIV infection, Alzheimer's disease, and normal aging
-
Trung Hoang Minh Pham
Assistant Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly InterestsUncovering mechanisms of tissue immunity and immunophysiology during persistent infection
The immune system safeguards the health of complex organisms by rapidly eliminating invading pathogens, curbing infection-induced tissue disruptions, and maintaining tissue homeostasis. Many bacterial pathogens evade host antimicrobial mechanisms and persist in infected tissues at low levels for long periods of time even in the presence of innate and adaptive immune resistance. During persistent infection, the immune system simultaneously orchestrates antimicrobial responses to contain the pathogen, repairs damaged tissue, regulates nutrient resources, and maintains other tissue physiological functions to ensure host survival. Failure of any of these tasks leads to uncontrolled infection, devastating disease, and even death. The goals of our research are to understand:
1)What are the innate and adaptive immune cellular mechanisms that contain pathogens during persistent infection?
2)How are tissue physiological functions, such as tissue repair and nutrient regulation, maintained during persistent infection?
3)How do pathogens survive innate and adaptive antimicrobial mechanisms in infected tissues?
4)How does persistent infection impact host immunity to secondary infections of a similar or different pathogen?
Through investigating these fundamental questions, we may be able to decode the underlying cellular and molecular mechanisms that can be harnessed to eradicate infections, promote tissue resilience, and restore health after an infectious insult. We employ animal infection models and bring together immunology, tissue biology, microbiology, and genetics to uncover the mechanisms of tissue immunity and immunophysiology during persistent infection from the molecular to organismal level.
Current areas of research:
•Development, maintenance, and plasticity of macrophage functional diversity in infected tissue
•Tissue repair and nutrient regulation during persistent infection
•Cellular dynamics and bacterial persistence in lymphoid organs