Bio-X
Showing 711-720 of 1,080 Results
-
Julia E. Noel, MD
Clinical Assistant Professor (Affiliated), OHNS/Head & Neck Surgery Divisions
Staff, OHNS/Otolaryngology/Head & Neck SurgeryBioDr. Noel is a head and neck surgeon with fellowship training in endocrine surgery and board certification in otolaryngology. She is an assistant professor in the Department of Otolaryngology — Head & Neck Surgery at Stanford University School of Medicine.
She specializes in surgery of the thyroid and parathyroid glands and lymph nodes. She has additional expertise and training in minimally invasive treatment approaches and ultrasound-guided techniques performed in the office, such as Radiofrequency Ablation (RFA) and alcohol ablation.
Among the many conditions she treats are thyroid cancer, thyroid nodules, hyperthyroidism, hyperparathyroidism, hypercalcemia, Grave’s disease, and goiter.
For every patient, Dr. Noel prepares a personalized care plan that is comprehensive and compassionate. Her goal is to educate and empower each patient to achieve the best possible health and quality of life. Patient reviews praise her clinical expertise as well as her skills as a listener and communicator.
Dr. Noel conducts a robust research program to advance patient care. She has published extensively on the diagnosis, appropriate management, and optimization of outcomes for patients with thyroid and parathyroid disorders. Her articles have appeared in JAMA Otolaryngology Head and Neck Surgery, Nature Communications, Endocrine Practice, and many more peer-reviewed journals. She has co-authored numerous guideline and consensus statements, including an international statement on the use of RFA in benign and malignant thyroid nodules.
She serves as associate editor of the endocrine section for the journal Laryngoscope Investigative Otolaryngology. She is additionally an editorial board member for VideoEndocrinology, a video journal covering leading-edge diagnostic and treatment techniques and technologies.
Dr. Noel has made presentations to her peers at national and international meetings of the American Academy of Otolaryngology, Head & Neck Surgery, American Thyroid Association, American Head & Neck Society, and the World Congress of Thyroid Cancer. She also has shared her insights into the future of thyroid surgery at the International Thyroid Cancer Survivors’ Conference.
She is a member of the American Academy of Otolaryngology and Head and Neck Surgery, American Head and Neck Society, American Thyroid Association, American Association of Clinical Endocrinologists, and American College of Surgeons. -
Hae Young Noh
Associate Professor of Civil and Environmental Engineering
BioHae Young Noh is an associate professor in the Department of Civil and Environmental Engineering. Her research introduced the new concept of “structures as sensors” to enable physical structures (e.g., buildings and vehicle frames) to be user- and environment-aware. In particular, these structures indirectly sense humans and surrounding environments through their structural responses (i.e., vibrations) by inferring the desired information (e.g., human behaviors, environmental conditions, heating and cooling system performance), instead of directly measuring the sensing targets with additional dedicated sensors (e.g., cameras, motion sensors). This concept brought a paradigm shift in how we view these structures and how the structures interact with us.
Traditionally, structures that we inhabit (such as buildings or vehicles) are considered as passive and unchanging objects that we need to monitor and control, utilizing a dense set of sensors to collect information. This has often been complicated by “noise” caused by the occupants and environments. For example, building vibrations induced by indoor and outdoor environmental and operational conditions (e.g., people walking around, traffic outside, heating system running, etc.), have been often seen as noise that needs to be removed in traditional building science and structural engineering; however, they are a rich source of information about structure, users, environment, and resources. Similarly, in vehicle engineering, researchers and engineers have been investigating control and dynamics to reduce vehicle vibration for safety and comfort. However, vibrations measured inside vehicles contain information about transportation infrastructure, vehicle itself, and driver.
Noh's work utilizes this “noise” to empower the structures with the ability to perceive and understand the information about users and surroundings using their own responses, and actively adopt and/or interact to enhance their sustainability and the occupants’ quality of life. Since she utilizes the structure itself as a sensing medium, information collection involves a simpler set of hardware that can be easily maintained throughout the structural lifetime. However, the analysis of data to separate the desired information becomes more challenging. This challenge is addressed through high-rate dynamic sensing and multi-source inferencing. Ultimately, her work aims to allow structural systems to become general sensing platforms that are easier and more practical to deploy and maintain in a long-term.
At Stanford University, Noh received her PhD and MS degrees in the CEE department and her second MS degree in Electrical Engineering. Noh earned her BS in Mechanical and Aerospace Engineering at Cornell University. -
Garry Nolan
Rachford and Carlota Harris Professor
Current Research and Scholarly InterestsDr. Nolan's group uses high throughput single cell analysis technology cellular biochemistry to study autoimmunity, cancer, virology (influenza & Ebola), as well as understanding normal immune system function. Using advanced flow cytometric techniques such as Mass Cytometry, MIBI (ion beam imaging), CODEX and computational biology approaches, we focus on understanding disease processes at the single cell level. We have a strong interest in cancer immunotherapy and pathogen-host interactions.
-
Anthony Norcia
Professor (Research) of Psychology
Current Research and Scholarly InterestsVision, development, functional imaging, systems analysis
-
Roeland Nusse
Virginia and Daniel K. Ludwig Professor of Cancer Research
Current Research and Scholarly InterestsOur laboratory studies Wnt signaling in development and disease. We found recently that Wnt proteins are unusual growth factors, because they are lipid-modified. We discovered that Wnt proteins promote the proliferation of stem cells of various origins. Current work is directed at understanding how Wnt signals lead to the proliferation of stem cells and on understanding Wnt signaling during repair and regeneration after tissue injury.
-
Paul Nuyujukian
Assistant Professor of Bioengineering and of Neurosurgery and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsOur group explores neuroengineering and its application to both basic and clinical neuroscience. Our goal is to develop brain-machine interfaces as a platform technology for a variety of brain-related medical conditions including stroke and epilepsy.
-
Dáibhid Ó Maoiléidigh, PhD
Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsThe Ó Maoiléidigh group employs mathematical and computational approaches to better understand normal hearing and hearing impairment. Because complete restoration of auditory function by artificial devices or regenerative treatments will only be possible when experiments and computational modeling align, we work closely with experimental laboratories. Our goal is to understand contemporary experimental observations, to make experimentally testable predictions, and to motivate new experiments. We are pursuing several projects.
Hair-Bundle Mechanics
Auditory and balance organs rely on hair cells to convert mechanical vibrations into electrical signals for transmission to the brain. In response to the quietest sounds we can hear, the hair cell's mechanical sensor, the hair bundle, moves by less than one-billionth of a meter. To determine how this astounding sensitivity is possible, we construct computational models of hair-bundle mechanics. By comparing models with experimental observations, we are learning how a hair bundle's geometry, material properties, and ability to move spontaneously determine its function.
Cochlear Mechanics
The cochlea contains the auditory organ that houses the sensory hair cells in mammals. Vibrations in the cochlea arising from sound are amplified more than a thousandfold by the ear's active process. New experimental techniques have additionally revealed that the cochlea vibrates in a complex manner in response to sound. We use computational models to interpret these observations and to make hypotheses about how the cochlea works. -
Lucy Erin O'Brien
Associate Professor of Molecular and Cellular Physiology
Current Research and Scholarly InterestsMany adult organs tune their functional capacity to variable levels of physiologic demand. Adaptive organ resizing breaks the allometry of the body plan that was established during development, suggesting that it occurs through different mechanisms. Emerging evidence points to stem cells as key players in these mechanisms. We use the Drosophila midgut, a stem-cell based organ analogous to the vertebrate small intestine, as a simple model to uncover the rules that govern adaptive remodeling.
-
Lauren O'Connell
Associate Professor of Biology
Current Research and Scholarly InterestsThe O'Connell lab studies how genetic and environmental factors contribute to biological diversity and adaptation. We are particularly interested in understanding (1) how behavior evolves through changes in brain function and (2) how animal physiology evolves through repurposing existing cellular components.
-
Jelena Obradović
Professor of Education
Current Research and Scholarly InterestsAdaptation, resilience, and developmental psychopathology of disadvantaged children populations; Stress reactivity and biological sensitivity to contextual influences; Executive function and self-regulatory abilities; Effects of risk, adversity, and social status on children’s development.