Wu Tsai Human Performance Alliance


Showing 1-10 of 11 Results

  • Antoine Falisse

    Antoine Falisse

    Research Engineer, Wu Tsai Human Performance Alliance

    BioDr. Falisse is a postdoctoral fellow in Bioengineering working on computational approaches to study human movement disorders. He primarily uses optimization methods, biomechanical modeling, and data from various sources (wearables, videos, medical images) to get insights into movement abnormalities and design innovative treatments and rehabilitation protocols.

    Dr. Falisse received his PhD from KU Leuven (Belgium) where he worked on modeling and simulating the locomotion of children with cerebral palsy. His research was supported by the Research Foundation Flanders (FWO) through a personal fellowship. Dr. Falisse received several awards for his PhD work, including the David Winter Young Investigator Award, the Andrzej J. Komor Young Investigator Award, the VPHi Thesis Award in In Silico Medicine, and the KU Leuven Research Council Award in Biomedical Sciences.

  • Kayvon Fatahalian

    Kayvon Fatahalian

    Associate Professor of Computer Science

    BioKayvon Fatahalian is an Associate Professor in the Computer Science Department at Stanford University. Kayvon's research focuses on the design of systems for real-time graphics, high-efficiency simulation engines for applications in entertainment and AI, and platforms for the analysis of images and videos at scale.

  • Vivian Feig

    Vivian Feig

    Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioDr. Vivian Feig is an incoming Assistant Professor in the Mechanical Engineering department, beginning March 2024. The Feig lab aims to develop low-cost, noninvasive, and widely-accessible medical technologies that integrate seamlessly with the human body. We accomplish this by developing functional materials and devices with dynamic mechanical properties, leveraging chemistry and physics insights to engineer novel systems at multiple length scales. In pursuit of our goals, we maintain a strong emphasis on integrity and diversity, while nurturing the intellectual curiosity and holistic growth of our team members as researchers, communicators, and leaders.

  • Chelsea Finn

    Chelsea Finn

    Assistant Professor of Computer Science and of Electrical Engineering

    BioChelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University, and the William George and Ida Mary Hoover Faculty Fellow. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected experience, and meta-learning algorithms that can enable fast learning of new concepts and behaviors. Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.

    Website: https://ai.stanford.edu/~cbfinn

  • Michael Fischbach

    Michael Fischbach

    Liu (Liao) Family Professor

    Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.

    1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.

    2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:

    Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?

    Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?

    3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing.

  • Emily Fox

    Emily Fox

    Professor of Statistics and of Computer Science
    On Partial Leave from 10/01/2024 To 06/30/2025

    BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.

    Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities.

  • Michael Fredericson, MD

    Michael Fredericson, MD

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsMy research focuses on the etiology, prevention, and treatment of overuse sports injuries in athletes and lifestyle medicine practices for improved health and longevity.

  • Michael T. Freehill, MD, FAOA

    Michael T. Freehill, MD, FAOA

    Associate Professor of Orthopaedic Surgery

    BioDr. Freehill is a board-certified, double fellowship-trained specialist in orthopaedic surgery with a sub-specialty certification in sports medicine. His concentration is in shoulder and elbow. Dr. Freehill is a team physician for the Stanford University athletics program and head physician for the Stanford University baseball team. Dr. Freehill also teaches in the Department of Orthopaedic Surgery at Stanford University School of Medicine.

    Dr. Freehill’s practice focuses on all shoulder conditions. He treats rotator cuff tears, shoulder instability, shoulder arthritis, sports shoulder, arthropathy, complex shoulder pathology, and sports related shoulder injury. In addition, he is also passionate about sports- related elbow injuries, with an emphasis on thrower’s elbow.

    Professional and amateur athletes, as well as non-athletes, come to Dr. Freehill for expert care. His sports medicine training and specialization in shoulder replacement procedures enable him to treat patients across the lifespan. Depending on factors including the patient’s condition and occupation, he may recommend treatment ranging from non-operative solutions (such as physical therapy) to cutting-edge biologics procedures or complex surgery.

    In addition to his positions within the Stanford University athletics program, Dr. Freehill serves as assistant team physician for the Oakland A’s. Previously, he was a team physician for the Detroit Tigers and the Winston-Salem Dash (affiliated with the Chicago White Sox); he assisted with the Baltimore Orioles. He has also served as Director of Sports Medicine for Wake Forest University Athletics.

    As executive director of the Stanford Baseball Science CORE, Dr. Freehill draws on his previous experience as a professional baseball player to help athletes of all skill levels. In the lab, he conducts cutting edge research on the biomechanics of overhead throwers in order to support advances in throwing performance. He has conducted a study on pitch counts in adolescent players funded by Major League Baseball. Dr. Freehill was also awarded a research grant from the National Institutes of Health to investigate stromal vascular fractionated mesenchymal cells and their potential for healing rotator cuff tendon tears.

    Dr. Freehill has pioneered the use of some of the latest techniques and technology for leading-edge care. Among the advanced technologies he utilizes is a virtual reality (VR) system that enables him to perform a simulated shoulder arthroplasty procedure prior to entering the operating room with a patient. The system also enables him to predict and order customized implants if needed, which is believed to enable a more positive outcome for patients.

    Peer-reviewed articles authored by Dr. Freehill explore rotator cuff injuries, shoulder arthroplasty, baseball-related injuries and performance interests, and more. His work has been featured in the American Journal of Sports Medicine, the Orthopedic Journal of Sports Medicine, Journal of Shoulder and Elbow Surgery, Arthroscopy, and elsewhere. He has written numerous book chapters and made over 200 presentations at conferences around the world.
    Dr. Freehill’s honors include an Orthopaedic Residency Research Award while at Johns Hopkins University. He is also a Neer Award winner, denoting the highest research award selected annually by the American Shoulder and Elbow Society.

    Currently, he serves on the Medical Publishing Board of Trustees for the American Orthopaedic Society for Sports Medicine. He is a member of the American Orthopaedic Association, and the Major League Baseball Team Physician Association. He is a committee member for the American Shoulder and Elbow Surgeons Society, International Congress of Arthroscopy and Sports Traumatology, the Arthroscopy Association of North America, and the American Academy of Orthopaedic Surgeons.

  • Anne L. Friedlander

    Anne L. Friedlander

    Adjunct Professor

    BioAnne L. Friedlander, Ph.D, is the Assistant Director of Stanford Lifestyle Medicine, an Adjunct Professor in the Program in Human Biology, and a member of the Wu Tsai Human Performance Alliance. She has served as the Director of the Exercise Physiology Lab, the Director of the Mobility Division within the Stanford Center on Longevity (SCL), and the Associate Director for Education within the Geriatric Research, Education and Clinical Center (GRECC) at the VA Palo Alto. Dr. Friedlander has broad research experience in the areas of enhancing human performance, environmental physiology, and using physical activity and mobility to promote healthy aging. She also consults regularly with companies interested in developing new products, programs and ideas in the fitness and wellness space. She is passionate about the benefits of movement on the aging process and specializes in giving talks translating scientific findings on physiology and exercise into practical applications for people.

  • Lawrence Fung MD PhD

    Lawrence Fung MD PhD

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)
    On Partial Leave from 10/01/2024 To 11/29/2024

    Current Research and Scholarly InterestsDr. Lawrence Fung an Associate Professor in the Department of Psychiatry and Behavioral Sciences at Stanford University. He is the director of the Stanford Neurodiversity Project, director of the Neurodiversity Clinic, and principal investigator at the Fung Lab. His work, which focuses on autism and neurodiversity, traverses from multi-modal neuroimaging studies to new conceptualization of neurodiversity and its application to clinical, education, and employment settings. His lab advances the understanding of neural bases of human socio-communicative and cognitive functions by using novel neuroimaging and bioanalytical technologies. Using community-based participatory research approach, his team devises and implements novel interventions to improve the lives of neurodiverse individuals by maximizing their potential and productivity. His work has been supported by various agencies including the National Institutes of Health, Autism Speaks, California Department of Developmental Services, California Department of Rehabilitation, as well as philanthropy. He received his PhD in chemical engineering from Cornell University, and MD from George Washington University. He completed his general psychiatry residency, child and adolescent psychiatry fellowship, and postdoctoral research fellowship at Stanford.