Wu Tsai Human Performance Alliance
Showing 201-210 of 305 Results
-
Allison Okamura
Richard W. Weiland Professor in the School of Engineering and Professor of Mechanical Engineering
Current Research and Scholarly InterestsMy research focuses on developing the principles and tools needed to realize advanced robotic and human-machine systems capable of physical interaction. Application areas include surgery, simulation and training, rehabilitation, prosthetics, neuromechanics, exploration of hazardous and remote environments (e.g. space), design, and education.
-
Marily Oppezzo
Instructor, Medicine - Stanford Prevention Research Center
BioMarily Oppezzo is a behavioral and learning scientist. She completed her doctorate in Educational Psychology at Stanford in 2013. She also is a registered dietitian and has her master's of nutritional science. She completed her dietetic internship at the Palo Alto Veterans Hospital, and currently consults as a sports dietitian for Stanford's Runsafe program. Her research interests leverage her interdisciplinary training, with a focus on how to get people to change to improve their health and well-being. Specifically, these areas include: using social media to motivate physical activity changes in those with or at risk for heart disease; culturally tailoring nutrition and physical activity recommendations and education materials for an Alaskan native population; how walking can be used to improve people's cognitive and creative thinking; and applying learning theories to medical education topics.
-
Sergiu P. Pasca
Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program
Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain. -
Michele Lanpher Patel
Instructor, Medicine - Stanford Prevention Research Center
BioMichele L. Patel, PhD is an Instructor in the Stanford University School of Medicine. Her research focuses on optimizing digital health interventions for treating & preventing obesity. Digital interventions have potential for serving as first-line obesity treatments given their accessibility, low cost, and personalization. Dr. Patel is interested in testing innovative strategies to enhance engagement in these digital interventions. Leveraging an 'intervention optimization' paradigm (the Multiphase Optimization Strategy, MOST), she examines the unique and combined weight loss effects of intervention strategies. Optimizing interventions facilitates maximizing clinical impact while minimizing patient burden and healthcare costs.
Dr. Patel received a career development award from NIH (K23; 2022-2027). This work investigates the most potent combination of self-monitoring strategies in a behavioral weight loss intervention for 176 adults with overweight or obesity. Dr. Patel is interested in using digital tools such as commercial apps, wearable devices, and text messaging to improve access to and engagement in treatment.
Dr. Patel received her BA in psychology from Duke University in 2010 and her PhD in clinical psychology from Duke in 2018. She completed her clinical internship at the VA Palo Alto, specializing in behavioral medicine, and her postdoctoral fellowship at the Stanford Prevention Research Center.
Primary Research Interests:
-- Conducting clinical trials to optimize & evaluate digital health interventions for obesity
-- Improving engagement in self-monitoring and other behavioral intervention strategies
-- Identifying psychosocial factors (e.g., health literacy, stress) that impact treatment success
Methods:
-- RCTs, including factorial designs
-- embedded trials (study-within-a-trial)
-- systematic reviews
-- signal detection analysis
-- mixed methods & qualitative methods -
Marco Perez
Associate Professor of Medicine (Cardiovascular Medicine)
BioDr. Marco Perez's research goal is to better understand the fundamental causes of cardiovascular disease through the study of genetics and epidemiology. His group studies the genetic variations and environmental exposures that are associated with conditions such as atrial fibrillation and heart failure. He has led the studies of atrial fibrillation in Women's Health Initiative, one of the largest nation-wide population-based cohorts. He is currently conducting a large study monitoring for silent or asymptomatic atrial fibrillation in women from the WHI randomized to exercise intervention, and was co-PI of the Apple Heart Study, a clinical trial that validated the ability of a smartwatch to detect atrial fibrillation. He is now PI of the Clinical Coordinating Center at Stanford for the REACT-AF which is a clinical trial to evaluate efficacy and safety of a "pill-in-the pocket" approach to anticoagulation for AF using a smartwatch. He is interested in understanding the paradox that atrial fibrillation is less common in African Americans and Hispanics, despite a greater burden of risk factors such as hypertension. As director of the Stanford Inherited Arrhythmia Clinic, he evaluates families with rare inherited arrhythmias associated with sudden death such as Long QT and Brugada Syndromes and explores their links with novel genes. He also studies the genetic causes of very early onset atrial fibrillation. He also studies how best to use the electrocardiogram and imaging modalities using Machine Learning techniques to identify patients at risk for cardiovascular disease. Dr. Perez receives funding from the NIH/NHLBI, Apple Inc., Janssen and the Colson Foundation.
-
Suzanne Pfeffer
Emma Pfeiffer Merner Professor of Medical Sciences
Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.
-
Jennifer Pien MD
Clinical Associate Professor, Psychiatry and Behavioral Sciences
BioJennifer H. Pien is a Clinical Associate Professor through the Department of Psychiatry at Stanford University. She is the Director of The Pegasus Physician Writers, Founder of The Pegasus Review, and is a founding faculty editor for the Oxford Review of Books x Stanford collaboration. She also serves on the Advisory Board for The Bellevue Literary Press and the Stanford School of Medicine Medical Humanities Fellowship. Jennifer is represented by Amy Collins of Talcott Notch. She is the author of Healing the Healers, Johns Hopkins University Press, forthcoming 2025 and is the Co-Founder of Hesperides Literary Agency.
In addition to her work in Medical Humanities, her interests include advocacy for adults with developmental disabilities where she cofounded Puente Clinic through the San Mateo County Medical System, an innovative dev. disabilities subspecialty clinic. She serves on the Regional Advisory Committee to the California State Council on Developmental Disabilities. Currently, her clinical focus is on physician well-being through the WellConnect team. -
Russell Poldrack
Albert Ray Lang Professor of Psychology and, by courtesy, of Psychiatry and Behavioral Science
Current Research and Scholarly InterestsOur lab uses the tools of cognitive neuroscience to understand how decision making, executive control, and learning and memory are implemented in the human brain. We also develop neuroinformatics tools and resources to help researchers make better sense of data.