Stanford PULSE Institute
Showing 1-20 of 20 Results
-
Philip Bucksbaum
Marguerite Blake Wilbur Professor of Natural Science and Professor of Photon Science, of Applied Physics and of Physics
BioPhil Bucksbaum holds the Marguerite Blake Wilbur Chair in Natural Science at Stanford University, with appointments in Physics, Applied Physics, and in Photon Science at SLAC. He conducts his research in the Stanford PULSE Institute (https://web.stanford.edu/~phbuck). He and his wife Roberta Morris live in Menlo Park, California. Their grown daughter lives in Toronto.
Bucksbaum was born and raised in Iowa, and graduated from Harvard in 1975. He attended U.C. Berkeley on a National Science Foundation Graduate Fellowship and received his Ph.D. in 1980 for atomic parity violation experiments under Professor Eugene Commins, with whom he also has co-authored a textbook, “Weak Interactions of Leptons and Quarks.” In 1981 he joined Bell Laboratories, where he pursued new applications of ultrafast coherent radiation from terahertz to vacuum ultraviolet, including time-resolved VUV ARPES, and strong-field laser-atom physics.
He joined the University of Michigan in 1990 and stayed for sixteen years, becoming Otto Laporte Collegiate Professor and then Peter Franken University Professor. He was founding Director of FOCUS, a National Science Foundation Physics Frontier Center, where he pioneered research using ultrafast lasers to control quantum systems. He also launched the first experiments in ultrafast x-ray science at the Advanced Photon Source at Argonne National Lab. In 2006 Bucksbaum moved to Stanford and SLAC, and organized the PULSE Institute to develop research utilizing the world’s first hard x-ray free-electron laser, LCLS. In addition to directing PULSE, he has previously served as Department Chair of Photon Science and Division Director for Chemical Science at SLAC. His current research is in laser interrogation of atoms and molecules to explore and image structure and dynamics on the femtosecond scale. He currently has more than 250 publications.
Bucksbaum is a Fellow of the APS and the Optical Society, and has been elected to the National Academy of Sciences and the American Academy of Arts and Sciences. He has held Guggenheim and Miller Fellowships, and received the Norman F. Ramsey Prize of the American Physical Society for his work in ultrafast and strong-field atomic and molecular physics. He served as the Optical Society President in 2014, and also served as the President of the American Physical Society in 2020. He has led or participated in many professional service activities, including NAS studies, national and international boards, initiatives, lectureships and editorships. -
Leora Dresselhaus-Marais
Assistant Professor of Materials Science and Engineering, of Photon Science and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsMy group develops new methods to update old processes in metals manufacturing
-
Matthew R. Edwards
Assistant Professor of Mechanical Engineering
BioMatthew Edwards is an Assistant Professor of Mechanical Engineering. His research applies high-power lasers to the development of optical diagnostics for fluids and plasmas, the study of intense light-matter interactions, and the construction of compact light and particle sources, combining adaptive high-repetition-rate experiments and large-scale simulations to explore new regimes in fluid mechanics, thermodynamics, materials science, and plasma physics.
Matthew received BSE, MA, and PhD degrees in Mechanical and Aerospace Engineering from Princeton University. He was then a Lawrence Fellow in the National Ignition Facility and Photon Science Directorate at Lawrence Livermore National Laboratory. -
Kelly Gaffney
Professor of Photon Science
Current Research and Scholarly InterestsThe research team Professor Gaffney leads focuses on time resolved studies of chemical reactions. Recent advances in ultrafast x-ray lasers, like the LCLS at SLAC National Accelerator Laboratory, enable chemical reactions to be observed on the natural time and length scales of the chemical bond – femtoseconds and Ångströms. The knowledge gained from x-ray and optical laser studies will be used to spark new approaches to photo-catalysis and chemical synthesis.
-
Siegfried Glenzer
Professor of Photon Science and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsPlease see our website for detailed information: https://heds.slac.stanford.edu
-
Tony Heinz
Professor of Applied Physics, of Photon Science, and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsElectronic properties and dynamics of nanoscale materials, ultrafast lasers and spectroscopy.
-
Matthias Ihme
Professor of Mechanical Engineering, of Photon Science and, by courtesy, of Energy Science and Engineering
BioLarge-eddy simulation and modeling of turbulent reacting flows, non-premixed flame, aeroacoustics and combustion generated noise, turbulence and fluid dynamics, numerical methods and high-order schemes.
-
Felipe Jornada
Assistant Professor of Materials Science and Engineering
BioFelipe Jornada's research aims at predicting and understanding excited-state phenomena in quantum and energy materials. In order to make reliable predictions on novel materials, he relies on high-performance computer calculations based on parameter-free, quantum-mechanical theories that are developed in his group. He is interested in studying fundamental aspects of these excitations – their lifetimes, dynamics, and stability/binding energies – and how they can be engineered in novel materials, such as nanostructured and low-dimensional systems. His ultimate goal is to use insights from atomistic calculations to rationally design new materials with applications in energy research, electronics, optoelectronics, and quantum technologies.
Felipe received his Ph.D. degree in physics from UC Berkeley in 2017 under the advice of Prof. Steven G. Louie. His Ph.D. research focused on the prediction of the electronic and optical properties of new quasi-two-dimensional materials, such as graphene and monolayer transition metal dichalcogenides. In his postdoc, he studied a number of problems related to multiparticle excitations in low-dimensional materials, including biexcitons and plasmons. Felipe joined the Stanford faculty in January 2020 and an assistant professor in the Department of Materials Science and Engineering. -
Matthias Kling
Professor of Photon Science and, by courtesy, of Applied Physics
Current Research and Scholarly InterestsKling's research focuses on ultrafast electronics and nanophotonics employing ultrashort flashes of light from table-top and free-electron laser sources.
-
Aaron Lindenberg
Professor of Materials Science and Engineering and of Photon Science
BioLindenberg's research is focused on visualizing the ultrafast dynamics and atomic-scale structure of materials on femtosecond and picosecond time-scales. X-ray and electron scattering and spectroscopic techniques are combined with ultrafast optical techniques to provide a new way of taking snapshots of materials in motion. Current research is focused on the dynamics of phase transitions, ultrafast properties of nanoscale materials, and charge transport, with a focus on materials for information storage technologies, energy-related materials, and nanoscale optoelectronic devices.
-
Fang Liu
Assistant Professor of Chemistry
Current Research and Scholarly InterestsThe group will develop scalable and controllable processes to produce low dimensional materials and their artificial structures, and unravel their novel static and dynamical properties of broad interest to future photonic, electronic and energy technologies. The topics will include: a) Unraveling time-resolved dynamics in light-induced electronic response of two dimensional (2D) materials artificial structures. b) Fabrication of 1D atomically thin nanoribbon arrays and characterization of the electronic and magnetic properties for the prominent edge states. c) Lightwave manipulation with 2D superlattices. These research projects will provide participating students with broad interdisciplinary training across physics, chemistry, and materials science.
-
Wendy Mao
Professor of Earth and Planetary Sciences and of Photon Science
Current Research and Scholarly InterestsUnderstanding the formation and evolution of planetary interiors; experimental mineral physics; materials in extreme environments.
-
Agostino Marinelli
Assistant Professor of Photon Science and of Particle Physics and Astrophysics
Current Research and Scholarly InterestsX-ray free-electron lasers and applications.
Advanced particle accelerators. -
Thomas Markland
Associate Professor of Chemistry
Current Research and Scholarly InterestsOur research centers on problems at the interface of quantum and statistical mechanics. Particular themes that occur frequently in our research are hydrogen bonding, the interplay between structure and dynamics, systems with multiple time and length-scales and quantum mechanical effects. The applications of our methods are diverse, ranging from chemistry to biology to geology and materials science. Particular current interests include proton and electron transfer in fuel cells and enzymatic systems, atmospheric isotope separation and the control of catalytic chemical reactivity using electric fields.
Treatment of these problems requires a range of analytic techniques as well as molecular mechanics and ab initio simulations. We are particularly interested in developing and applying methods based on the path integral formulation of quantum mechanics to include quantum fluctuations such as zero-point energy and tunneling in the dynamics of liquids and glasses. This formalism, in which a quantum mechanical particle is mapped onto a classical "ring polymer," provides an accurate and physically insightful way to calculate reaction rates, diffusion coefficients and spectra in systems containing light atoms. Our work has already provided intriguing insights in systems ranging from diffusion controlled reactions in liquids to the quantum liquid-glass transition as well as introducing methods to perform path integral calculations at near classical computational cost, expanding our ability to treat large-scale condensed phase systems. -
Todd Martinez
David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science
On Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsAb initio molecular dynamics, photochemistry, molecular design, mechanochemistry, graphical processing unit acceleration of electronic structure and molecular dynamics, automated reaction discovery, ultrafast (femtosecond and attosecond) chemical phenomena
-
Jelena Vuckovic
Jensen Huang Professor of Global Leadership, Professor of Electrical Engineering and, by courtesy, of Applied Physics
Current Research and Scholarly InterestsJelena Vuckovic’s research interests are broadly in the areas of nanophotonics, quantum and nonlinear optics. Her lab develops semiconductor-based photonic chip-scale systems with goals to probe new regimes of light-matter interaction, as well as to enable platforms for future classical and quantum information processing technologies. She also works on transforming conventional photonics with the concept of inverse design, where optimal photonic devices are designed from scratch using computer algorithms with little to no human input. Her current projects include quantum and nonlinear optics, cavity QED, and quantum information processing with color centers in diamond and in silicon carbide, heterogeneously integrated chip-scale photonic systems, and on-chip laser driven particle accelerators.
-
Alfred Zong
Assistant Professor of Physics and Applied Physics
BioI am an assistant professor in the Departments of Physics and of Applied Physics, and my group focuses on the study of light-induced non-equilibrium phenomena in quantum materials. To capture the ultrafast dynamics on the nanoscale, we develop a variety of techniques such as ultrafast electron diffraction and microscopy, attosecond transient absorption spectroscopy, and coherent diffraction imaging. These time-resolved probes are integrated with a complex sample environment such as in-situ strain and electrostatic gating in order to design, discover, and understand non-equilibrium phases of quantum materials.
We are seeking motivated undergraduates, graduate students, and postdocs to join the group. Please email me directly to discuss opportunities.
For more details, check out the group website at https://zonglab.stanford.edu/