Stanford PULSE Institute


Showing 1-20 of 36 Results

  • Philip Bucksbaum

    Philip Bucksbaum

    Marguerite Blake Wilbur Professor of Natural Science and Professor of Photon Science, of Applied Physics and of Physics

    BioPhil Bucksbaum holds the Marguerite Blake Wilbur Chair in Natural Science at Stanford University, with appointments in Physics, Applied Physics, and in Photon Science at SLAC. He conducts his research in the Stanford PULSE Institute (https://web.stanford.edu/~phbuck). He and his wife Roberta Morris live in Menlo Park, California. Their grown daughter lives in Toronto.

    Bucksbaum was born and raised in Iowa, and graduated from Harvard in 1975. He attended U.C. Berkeley on a National Science Foundation Graduate Fellowship and received his Ph.D. in 1980 for atomic parity violation experiments under Professor Eugene Commins, with whom he also has co-authored a textbook, “Weak Interactions of Leptons and Quarks.” In 1981 he joined Bell Laboratories, where he pursued new applications of ultrafast coherent radiation from terahertz to vacuum ultraviolet, including time-resolved VUV ARPES, and strong-field laser-atom physics.

    He joined the University of Michigan in 1990 and stayed for sixteen years, becoming Otto Laporte Collegiate Professor and then Peter Franken University Professor. He was founding Director of FOCUS, a National Science Foundation Physics Frontier Center, where he pioneered research using ultrafast lasers to control quantum systems. He also launched the first experiments in ultrafast x-ray science at the Advanced Photon Source at Argonne National Lab. In 2006 Bucksbaum moved to Stanford and SLAC, and organized the PULSE Institute to develop research utilizing the world’s first hard x-ray free-electron laser, LCLS. In addition to directing PULSE, he has previously served as Department Chair of Photon Science and Division Director for Chemical Science at SLAC. His current research is in laser interrogation of atoms and molecules to explore and image structure and dynamics on the femtosecond scale. He currently has more than 250 publications.

    Bucksbaum is a Fellow of the APS and the Optical Society, and has been elected to the National Academy of Sciences and the American Academy of Arts and Sciences. He has held Guggenheim and Miller Fellowships, and received the Norman F. Ramsey Prize of the American Physical Society for his work in ultrafast and strong-field atomic and molecular physics. He served as the Optical Society President in 2014, and also served as the President of the American Physical Society in 2020. He has led or participated in many professional service activities, including NAS studies, national and international boards, initiatives, lectureships and editorships.

  • Ryan Coffee

    Ryan Coffee

    Senior Scientist, SLAC National Accelerator Laboratory

    Current Role at StanfordSr. Staff Scientist at SLAC National Accelerator Laboratory

  • Amy Cordones-Hahn

    Amy Cordones-Hahn

    Staff Scientist, SLAC National Accelerator Laboratory

    BioI am a staff scientist in the Stanford PULSE Institute at SLAC National Accelerator Laboratory, where I work in the Solution Phase Chemistry Group. I am interested in understanding the excited state processes that drive photochemical reactions of transition metal complexes relevant for solar energy conversion and catalysis. My research takes advantage of the atomic specificity of ultrafast x-ray methods at the Linac Coherent Light Source (LCLS), coupled with complementary ultrafast optical spectroscopy methods, to resolve the dynamics and reaction mechanisms of transition metal complexes acting as photosensitizers and photocatalysts.

    Research website: https://ultrafast.stanford.edu/spc-solution-phase-chemistry

  • James P. Cryan

    James P. Cryan

    Senior Scientist, SLAC National Accelerator Laboratory

    Current Role at StanfordPrincipal Investigator, Stanford PULSE Institute
    Atomic, Molecular, and Optical Sciences Department Head, Linac Coherent Light Source.

  • Peter Dahlberg

    Peter Dahlberg

    Assistant Professor of Photon Science and of Structural Biology

    BioPeter Dahlberg received his undergraduate degree at McGill University in 2011 and his Ph.D. in biophysics from the University of Chicago in 2016. He then came to Stanford to work with W. E. Moerner and Wah Chiu to develop correlative light and electron microscopy methods. These methods give highly specific information on the machines that fill cells and make them work. In 2021 he was awarded SLAC’s Panofsky Fellowship to continue his work on correlative microscopy. In 2023 he transitioned to a Staff Scientist role at SLAC. See the group website below for more information.

  • Leora Dresselhaus-Marais

    Leora Dresselhaus-Marais

    Assistant Professor of Materials Science and Engineering, of Photon Science and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsMy group develops new methods to update old processes in metals manufacturing

  • Matthew R. Edwards

    Matthew R. Edwards

    Assistant Professor of Mechanical Engineering

    BioMatthew Edwards is an Assistant Professor of Mechanical Engineering. His research applies high-power lasers to the development of optical diagnostics for fluids and plasmas, the study of intense light-matter interactions, and the construction of compact light and particle sources, combining adaptive high-repetition-rate experiments and large-scale simulations to explore new regimes in fluid mechanics, thermodynamics, materials science, and plasma physics.

    Matthew received BSE, MA, and PhD degrees in Mechanical and Aerospace Engineering from Princeton University. He was then a Lawrence Fellow in the National Ignition Facility and Photon Science Directorate at Lawrence Livermore National Laboratory.

  • Kelly Gaffney

    Kelly Gaffney

    Professor of Photon Science

    Current Research and Scholarly InterestsThe research team Professor Gaffney leads focuses on time resolved studies of chemical reactions. Recent advances in ultrafast x-ray lasers, like the LCLS at SLAC National Accelerator Laboratory, enable chemical reactions to be observed on the natural time and length scales of the chemical bond – femtoseconds and Ångströms. The knowledge gained from x-ray and optical laser studies will be used to spark new approaches to photo-catalysis and chemical synthesis.

  • Shambhu Ghimire

    Shambhu Ghimire

    Lead Scientist, SLAC National Accelerator Laboratory

    Current Role at StanfordPrincipal Investigator in a DOE-funded research area: High-order Harmonic Generation (HHG)

  • Siegfried Glenzer

    Siegfried Glenzer

    Professor of Photon Science and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsPlease see our website for detailed information: https://heds.slac.stanford.edu

  • Tony Heinz

    Tony Heinz

    Professor of Applied Physics, of Photon Science, and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsElectronic properties and dynamics of nanoscale materials, ultrafast lasers and spectroscopy.

  • Matthias Ihme

    Matthias Ihme

    Professor of Mechanical Engineering, of Photon Science and, by courtesy, of Energy Science and Engineering

    BioLarge-eddy simulation and modeling of turbulent reacting flows, non-premixed flame, aeroacoustics and combustion generated noise, turbulence and fluid dynamics, numerical methods and high-order schemes.

  • Felipe Jornada

    Felipe Jornada

    Assistant Professor of Materials Science and Engineering

    BioFelipe Jornada's research aims at predicting and understanding excited-state phenomena in quantum and energy materials. In order to make reliable predictions on novel materials, he relies on high-performance computer calculations based on parameter-free, quantum-mechanical theories that are developed in his group. He is interested in studying fundamental aspects of these excitations – their lifetimes, dynamics, and stability/binding energies – and how they can be engineered in novel materials, such as nanostructured and low-dimensional systems. His ultimate goal is to use insights from atomistic calculations to rationally design new materials with applications in energy research, electronics, optoelectronics, and quantum technologies.

    Felipe received his Ph.D. degree in physics from UC Berkeley in 2017 under the advice of Prof. Steven G. Louie. His Ph.D. research focused on the prediction of the electronic and optical properties of new quasi-two-dimensional materials, such as graphene and monolayer transition metal dichalcogenides. In his postdoc, he studied a number of problems related to multiparticle excitations in low-dimensional materials, including biexcitons and plasmons. Felipe joined the Stanford faculty in January 2020 and an assistant professor in the Department of Materials Science and Engineering.

  • Matthias Kling

    Matthias Kling

    Professor of Photon Science and, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsKling's research focuses on ultrafast electronics and nanophotonics employing ultrashort flashes of light from table-top and free-electron laser sources.

  • Aaron Lindenberg

    Aaron Lindenberg

    Professor of Materials Science and Engineering and of Photon Science

    BioLindenberg's research is focused on visualizing the ultrafast dynamics and atomic-scale structure of materials on femtosecond and picosecond time-scales. X-ray and electron scattering and spectroscopic techniques are combined with ultrafast optical techniques to provide a new way of taking snapshots of materials in motion. Current research is focused on the dynamics of phase transitions, ultrafast properties of nanoscale materials, and charge transport, with a focus on materials for information storage technologies, energy-related materials, and nanoscale optoelectronic devices.