Wu Tsai Neurosciences Institute
Showing 1-17 of 17 Results
-
Holly Tabor
Professor of Medicine (Primary Care & Population Health) and, by courtesy, of Pediatrics (Stanford Center of Biomedical Ethics)
Current Research and Scholarly InterestsMy research focuses on ethical issues in genetics and genomics, specifically return of results and translation for exome and whole genome sequencing and translation of genomic sequencing into the clinical setting. I also conduct research on ethical issues in clinical care and research for patients and families with autism and other developmental and cognitive disabilities.
-
William Talbot
Mary and Dr. Salim Shelby Professor
Current Research and Scholarly InterestsWe use genetic and cellular approaches to investigate the molecular basis of glial development and myelination in the zebrafish.
-
Longzhi Tan
Assistant Professor of Neurobiology
Current Research and Scholarly InterestsThe Tan Lab studies the single-cell 3D genome architectural basis of neurodevelopment and aging by developing the next generation of in vivo multi-omic assays and algorithms, and applying them to the human and mouse cerebellum.
-
Hua Tang
Professor of Genetics and, by courtesy, of Statistics
Current Research and Scholarly InterestsDevelop statistical and computational methods for population genomics analyses; modeling human evolutionary history; genetic association studies in admixed populations.
-
Daniel Tartakovsky
Professor of Energy Science Engineering
Current Research and Scholarly InterestsEnvironmental fluid mechanics, Applied and computational mathematics, Biomedical modeling.
-
Peter Tass
Professor of Neurosurgery
BioDr. Peter Tass investigates and develops neuromodulation techniques for understanding and treating neurologic conditions such as Parkinson’s disease, epilepsy, dysfunction following stroke and tinnitus. He creates invasive and non-invasive therapeutic procedures by means of comprehensive computational neuroscience studies and advanced data analysis techniques. The computational neuroscience studies guide experiments that use clinical electrophysiology measures, such as high density EEG recordings and MRI imaging, and various outcome measures. He has pioneered a neuromodulation approach based on thorough computational modelling that employs dynamic self-organization, plasticity and other neuromodulation principles to produce sustained effects after stimulation. To investigate stimulation effects and disease-related brain activity, he focuses on the development of stimulation methods that cause a sustained neural desynchronization by an unlearning of abnormal synaptic interactions. He also performs and contributes to pre-clinical and clinical research in related areas.
-
Vivianne Tawfik
Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult Pain)
Current Research and Scholarly InterestsMy overall research interest is to understand how the immune system interacts with the nervous system after injury to promote the transition from acute to chronic pain. In my clinical practice I care for patients with persistent pain that often occurs after minor trauma such as fracture or surgery. Using basic science approaches including whole system immune phenotyping with mass cytometry and genetic manipulation of peripheral and central immune cells, we seek to dissect the temporal and tissue-specific contribution of these cells to either promotion or inhibition of healing.
-
Avnesh Thakor
Associate Professor of Radiology (Pediatric Radiology)
Current Research and Scholarly InterestsInterventional Radiologists can access almost any part of the human body without the need for conventional open surgical techniques. As such, they are poised to change the way patients can be treated, given they can locally deliver drug, gene, cell and cell-free therapies directly to affected organs using image-guided endovascular, percutaneous, endoluminal, and even using device implantation approaches
-
Suzanne Tharin
Associate Professor of Neurosurgery
Current Research and Scholarly InterestsThe long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of “suites” of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.
-
Stuart Thompson
Professor of Biology (Hopkins Marine Station)
Current Research and Scholarly InterestsNeurobiology, signal transduction
-
Alice Ting
Professor of Genetics, of Biology and, by courtesy, of Chemistry
Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from protein engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational design.
-
Jeanne L. Tsai
Dunlevie Family Professor
On Leave from 10/01/2024 To 12/31/2024Current Research and Scholarly InterestsMy research examines how culture shapes affective processes (emotions, moods, feelings) and the implications cultural differences in these processes have for what decisions people make, how people think about health and illness, and how people perceive and respond to others in an increasingly multicultural world.
-
Richard Tsien
George D. Smith Professor, Emeritus
Current Research and Scholarly InterestsWe study synaptic communication between brain cells with the goal of understanding neuronal computations and memory mechanisms. Main areas of focus include: presynaptic calcium channels, mechanisms of vesicular fusion and recycling. Modulation of synaptic strength through changes in postsynaptic receptors and dendritic morphology. Signaling that links synaptic activity to nuclear transcription and local protein translation. Techniques include imaging, electrophysiology, molecular biology.
-
Jason Tucciarone, MD, PhD
Assistant Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology)
BioJason Tucciarone MD, PhD is an Assistant Professor with Stanford School of Medicine’s Department of Psychiatry and Behavioral Sciences. As a neuroscientist, he leads a lab interested in biological mechanisms of mental illness and investigating new therapies for mood disorders and addiction. In particular, he is defining new cell types and evolutionary conserved circuits in emotional processing centers of the brain, with the hope of finding new entry points for novel therapeutics. Working with Dr Robert Malenka, he is using optogenetic, chemogenetic, neuroimaging and behavioral approaches in mouse models of addiction to uncover vulnerable brain circuitry in opioid use disorder. Alongside Dr Alan Schatzberg, he is investigating the efficacy of buprenorphine augmentation to IV ketamine infusion at reducing suicidality in treatment resistant depression.
Clinically, he works collaboratively in the department’s Neuropsychiatry clinic and his clinical focus includes treating patients with diverse and complex presentations at the interface of psychiatry and neurology with particular interest in functional neurological disorders. He sees a small cohort of psychotherapy patients in Individual Psychotherapy Clinic. He also works weekend shifts on Stanford’s inpatient psychiatry units.
Prior to training in psychiatry at Stanford’s research residency track Jason received his bachelor’s degree in biology and philosophy from Union College. He spent three years as a Post-Baccalaureate IRTA fellow at the National Institute of Neurological Disorders and Stroke investigating and developing MRI reportable contrast agents to map neuronal connectivity. Following this he entered the Medical Scientist Training Program (MD/PhD) at the State University of NY Stony Brook University. There he completed a doctoral dissertation in neuroscience under the mentorship Dr. Josh Huang at Cold Spring Harbor Laboratory. His thesis work employed mouse genetic dissections of excitatory and inhibitory cortical circuits with a focus on the circuitry of chandelier inhibitory interneurons in prefrontal cortex.
In addition to his research and clinical work, Jason is passionate about teaching, mentorship, and resident clinical supervision. He joined a working group early in his clinical residency to restructure trainee’s neuroscience education. He teaches introductory lectures in the neuroscience of addiction, PTSD, psychosis, and mood disorders. He also leads resident group supervision in their introductory psychodynamic psychotherapy clinical experience. He supervises medical students, residents, and clinical fellows in Neuropsychiatry clinic. Finally, committed to the Stanford clinical community, he leads a support group for Internal Medicine interns and residents.