School of Engineering
Showing 481-500 of 710 Results
-
Bradford Parkinson
Edward C. Wells Professor in the School of Engineering, Emeritus
BioProfessor Bradford Parkinson was the Chief Architect for GPS, and led the original advocacy for the system in 1973 as an Air Force Colonel. Gaining approval, he became the first Director of the GPS Joint Program Office and led the original development of spacecraft, Master Control Station and 8 types of User Equipment. He continued leadership of the Program through the extensive test validation Program, including being the Launch Commander for the first GPS satellite launches. This original deployment of GPS demonstrated comfortable margins against all PNT (Positioning, Navigation, and Timing) requirements.
Earlier in his career, he was a key developer of a modernized AC-130 Gunship, introduction of which included 160 hours of combat missions. He was an instructor at the USAF Test Pilot School. In addition he led the Department of Astronautics and Computer Science at the US Air Force Academy. He retired from the US Air Force as a Colonel.
He was appointed a Professor at Stanford University in 1984, after six years of experience in industry. At Stanford University, he led the development of many innovative applications of GPS, including:
1.Commercial aircraft (Boeing 737) blind landing using GPS alone,
2.Fully automatic GPS control of Farm Tractors on a rough field to an accuracy of 2 inches,
3.Pioneering the augmentation to GPS (WAAS) that allows any user to achieve accuracies of 2 feet and very high levels of integrity assurance.
He has been the CEO of two companies, and serves on many boards. He is the editor/author of the AIAA Award winning 2 Volumes: “GPS Theory and Applications” and is author or coauthor of over 80 technical papers.
Among his many awards is the Draper Prize of the National Academy of Engineering, considered by some to be the “Engineering Nobel”. -
M Elisabeth Pate-Cornell
Burton J. and DeeDee McMurtry Professor in the School of Engineering
BioDr. Marie-Elisabeth Paté-Cornell is the Burt and Deedee McMurtry Professor in the School of Engineering, and a Professor and Founding Chair of the Department of Management Science and Engineering at Stanford University (2000-2011). Previously, she was the Professor and Chair of the Stanford Department of Industrial Engineering and Engineering Management and an Assistant Professor of Civil Engineering at MIT. Her specialty is engineering risk analysis with application to complex systems (seismic risk, space systems, medical procedures and devices, offshore oil platforms, cyber security, etc.). Her earlier research has focused on the optimization of warning systems and the explicit inclusion of human and organizational factors in the analysis of systems’ failure risks. Her more recent work is on the use of game theory in risk analysis with applications that have included counterterrorism and cyber security.
She is a member of the National Academy of Engineering where she chairs the section of Interdisciplinary Engineering and Special Fields, of the French Académie des Technologies, and of the NASA Advisory Council. She is co-chair of the committee of the National Academies (NASEM) on risk analysis methods for nuclear war and nuclear terrorism. She is a Fellow (and past president) of the Society for Risk Analysis and of the Institute for Operations Research and Management Science. She is the author of more than one hundred publications, with several best paper awards, and the co-editor of a book on Perspectives on Complex Global Problems (2016). She was a member of the Board of Advisors of the Naval Postgraduate School, which she chaired from 2004 to 2006, and of the Navy War College. Dr. Paté-Cornell was also a member of the President’s (Foreign) Intelligence Advisory Board (2001-2008), of the board of the Aerospace Corporation (2004-2013) of Draper Laboratory (2009-2016), and of InQtel (2006-2017). She was awarded the Frank Ramsey Medal of the Decision Analysis Society, the 2021 IEEE Ramo medal in Systems Engineering and Science, and the 2022 PICMET Award for Leadership in Technology Management. She is a Fellow (and past president) of the Society for Risk Analysis and of the Institute for Management Science and Operations Research, and a Distinguished Vising Scientist of the NASA Jet Propulsion Laboratory. She is the author of more than one hundred publications, for which she got several best paper awards, and the co-editor of a book on Perspectives on Complex Global Problems (2016). She holds a BS in Mathematics and Physics, Marseille (France), an Engineering degree (Applied Math/CS) from the Institut Polytechnique de Grenoble (France), an MS in Operations Research and a PhD in Engineering-Economic Systems, both from Stanford University.
She and her late husband, Dr. Allin Cornell had two children, Philip Cornell (born 1981) and Ariane Cornell (1984). She is married to Admiral James O. Ellis Jr. (US Navy, Ret.). -
Arogyaswami Paulraj
Professor (Research) of Electrical Engineering, Emeritus
BioProf. Arogyaswami Paulraj is an Emeritus Professor at Stanford University. Paulraj's legacy is deeply intertwined with the evolution of wireless communication. His groundbreaking work on MIMO (multiple input, multiple output) technology laid the foundation for today's ubiquitous 4G/5G networks and high-speed Wi-Fi.
Paulraj's journey began in the Indian Navy, where he served from 1965 to 1991. During this time, he led the development of the APSOH anti-submarine sonar system and established three key R&D labs for the Indian government. His contributions earned him the prestigious Padma Bhushan award, India's third highest civilian honor.
Following his naval career, Paulraj joined Stanford University as a postdoctoral researcher. His research focus shifted to wireless communication, where he made groundbreaking contributions to MIMO technology. MIMO enables data transmission using multiple antennas, significantly increasing network capacity and data rates.
Paulraj's innovation has been recognized with numerous accolades, including the 2024 Royal Acad. Eng. Prince Philip Medal, the 2023 IET Faraday Medal, the 2014 Marconi Prize, and the 2011 IEEE Alexander Graham Bell Medal. He is also a fellow of nine national academies in engineering, sciences, and the arts, and an inductee of the US Patent Office’s National Inventors Hall of Fame.
Currently, Paulraj continues to contribute to technological advancement. He chairs several committees for the Government of India, focusing on the Indian Semiconductor Mission and Core ICT initiatives. His dedication to research and development continues to shape the future of wireless communication. -
John M. Pauly
Reid Weaver Dennis Professor
BioInterests include medical imaging generally, and magnetic resonance imaging (MRI) in particular. Current efforts are focused on medical applications of MRI where real-time interactive imaging is important. Two examples are cardiac imaging, and the interactive guidance of interventional procedures. Specific interests include rapid methods for the excitation and acquisition of the MR signal, and the reconstruction of images from the data acquired using these approaches.
-
Kim Butts Pauly
Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsWe are investigating and developing, and applying focused ultrasound in neuromodulation, blood brain barrier opening, and ablation for both neuro and body applications.
-
Marco Pavone
Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering and of Computer Science
BioDr. Marco Pavone is an Associate Professor of Aeronautics and Astronautics at Stanford University, where he directs the Autonomous Systems Laboratory and the Center for Automotive Research at Stanford. He is also a Distinguished Research Scientist at NVIDIA where he leads autonomous vehicle research. Before joining Stanford, he was a Research Technologist within the Robotics Section at the NASA Jet Propulsion Laboratory. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. His main research interests are in the development of methodologies for the analysis, design, and control of autonomous systems, with an emphasis on self-driving cars, autonomous aerospace vehicles, and future mobility systems. He is a recipient of a number of awards, including a Presidential Early Career Award for Scientists and Engineers from President Barack Obama, an Office of Naval Research Young Investigator Award, a National Science Foundation Early Career (CAREER) Award, a NASA Early Career Faculty Award, and an Early-Career Spotlight Award from the Robotics Science and Systems Foundation. He was identified by the American Society for Engineering Education (ASEE) as one of America's 20 most highly promising investigators under the age of 40. His work has been recognized with best paper nominations or awards at a number of venues, including the European Conference on Computer Vision, the IEEE International Conference on Robotics and Automation, the European Control Conference, the IEEE International Conference on Intelligent Transportation Systems, the Field and Service Robotics Conference, the Robotics: Science and Systems Conference, and the INFORMS Annual Meeting.
-
Roy Pea
Director, H-STAR, David Jacks Professor of Education and Professor, by courtesy, of Computer Science
Current Research and Scholarly Interestslearning sciences focus on advancing theories, research, tools and social practices of technology-enhanced learning of complex domains
-
Markus Pelger
Associate Professor of Management Science and Engineering
Current Research and Scholarly InterestsHis research focuses on understanding and managing financial risk. He develops mathematical financial models and statistical methods, analyzes financial data and engineers computational techniques. His research is divided into three streams: machine learning solutions to big-data problems in empirical asset pricing, statistical theory for high-dimensional data and stochastic financial modeling.
-
Matthew Petrucci
Research Engineer
BioMatt is the Scientific Program Manager for the Mobilize and Restore Centers at Stanford University. He is interested in developing digital health tools that optimize human mobility and performance. His previous research has focused on cross-sectional, longitudinal, translational, and feasibility studies in people with Parkinson’s disease, people with multiple sclerosis, and firefighters. These studies included evaluating objective biomarkers of disease or performance, optimizing and evaluating novel treatments and interventions, developing real-time closed-loop algorithms, and clinical trials. He helps run the various scientific outreach and training programs of the Mobilize and Restore Centers.
-
Robert Phelts
Research Engineer
BioR. Eric Phelts is a research engineer in the Department of Aeronautics and Astronautics at Stanford University. His research involves signal monitoring techniques and analysis for SBAS, GBAS, and ARAIM.
-
Piero Pianetta
Professor (Research) of Photon Science and of Electrical Engineering
BioPianetta's research is directed towards understanding how the atomic and electronic structure of semiconductor interfaces impacts device technology pertaining to advanced semiconductors and photocathodes. His research includes the development of new analytical tools for these studies based on the use of synchrotron radiation. These include the development of ultrasensitive methods to analyze trace impurities on the surface of silicon wafers at levels as low as 1e-6 monolayer (~1e8 atoms/cm2) and the use of various photoelectron spectroscopies (X-ray photoemission, NEXAFS, X-ray standing waves and photoelectron diffraction) to determine the bonding and atomic structure at the interface between silicon and different passivating layers. Recent projects include the development of high resolution (~30nm) x-ray spectromicroscopy with applications to energy materials such as Li batteries.
-
Mert Pilanci
Assistant Professor of Electrical Engineering
Current Research and Scholarly InterestsDr. Pilanci's research interests include neural networks, machine learning, mathematical optimization, information theory and signal processing.
-
Peter Pinsky
Professor of Mechanical Engineering, Emeritus
BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.
-
Grigore Pintilie
Research Scientist
BioYork University, B.Sc. 1995-1999, Computer Science - Computer Graphics, HCI
University of Toronto, M.Sc. 1999-2001, Computer Science, Computer Graphics
Blueprint Initiative, 2001-2005 - Bioinformatics Research
MIT, Ph.D. 2005-2011 - Electrical Engineering and Computer Science, Biology - CryoEM map segmentation and fitting of atomic models
Baylor College of Medicine 2011-2017 - Scientific Programmer - Cryo-EM map analysis and atomic modeling
Stanford University 2017-present - Research Scientist - Cryo-EM map analysis and atomic modeling