School of Engineering
Showing 301-350 of 478 Results
-
Lloyd B. Minor, MD
The Carl and Elizabeth Naumann Dean of the School of Medicine, Vice President for Medical Affairs, Stanford University, Professor of Otolaryngology - Head and Neck Surgery and Professor of Neurobiology and of Bioengineering, by courtesy
Current Research and Scholarly InterestsThrough neurophysiological investigations of eye movements and neuronal pathways, Dr. Minor has identified adaptive mechanisms responsible for compensation to vestibular injury in a model system for studies of motor learning. Following his discovery of superior canal dehiscence, he published a description of the disorder’s clinical manifestations and related its cause to an opening in the bone covering of the superior canal. He subsequently developed a surgical procedure to correct the problem.
-
Brando Miranda
Ph.D. Student in Computer Science, admitted Autumn 2022
BioBio
Brando Miranda is a current Ph.D. Student at Stanford University under the supervision of Professor Sanmi Koyejo in the department of Computer Science. Previously he has been a graduate student at University of Illinois Urbana-Champaign, Research Assistant at MIT’s Center for Brain Minds and Machines (CBMM), and graduate student at the Massachusetts Institute of Technology (MIT). Miranda’s research interests lie in the field of meta-learning, foundation models for theorem proving, and human & brain inspired Artificial Intelligence (AI). Miranda completed his Master of Engineering in Electrical Engineering and Computer Science under the supervision of Professor Tomaso Poggio – where he did research on Deep Learning Theory. Miranda has been the recipient of several awards, including Most Cited Paper Certificate awarded by International Journal of Automation & Computing (IJAC), two Honorable Mention with the Ford Foundation Fellowship, Computer Science Excellence Saburo Muroga Endowed Fellow, Stanford School of Engineering fellowship, and is currently an EDGE Scholar at Stanford University.
About me (Informal)
I am a scientist and an engineer that is interested in moving forward the powerful and beautiful field of A.I. closer to true Artificial General Intelligence (AGI). I believe an important direction is understanding how to combine cognitive and neuro-inspired models, specially investigating how reasoning and learning work together. In addition, I also believe being able to adapt to new tasks using prior experience and knowledge is crucial for AGI to occur. Consequently, I decided to pursue a Ph.D in AI and machine learning. I currently work on meta-learning and machine learning (ML) for Theorem Proving (TP) at Stanford University. -
Eduardo Miranda
Professor of Civil and Environmental Engineering
Current Research and Scholarly InterestsRegional seismic risk assessment, ground motion directionality
-
Azalia Mirhoseini
Assistant Professor of Computer Science
BioAzalia Mirhoseini is an Assistant Professor in the Computer Science Department at Stanford University. Professor Mirhoseini's research interest is in developing capable, reliable, and efficient AI systems for solving high-impact, real-world problems. Her work includes generalized learning-based methods for decision-making problems in systems and chip design, self-improving AI models through interactions with the world, and scalable deep learning optimization. Prior to Stanford, she spent several years in industry AI labs, including Anthropic and Google Brain. At Anthropic, she worked on advancing the capabilities and reliability of large language models. At Google Brain, she co-founded the ML for Systems team, with a focus on automating and optimizing computer systems and chip design. She received her BSc degree in Electrical Engineering from Sharif University of Technology and her PhD in Electrical and Computer Engineering from Rice University. Her work has been recognized through the MIT Technology Review’s 35 Under 35 Award, the Best ECE Thesis Award at Rice University, publications in flagship venues such as Nature, and coverage by various media outlets, including MIT Technology Review, IEEE Spectrum, The Verge, The Times, ZDNet, VentureBeat, and WIRED.
-
Mohammad Javad Mirshojaeian Hosseini
Postdoctoral Scholar, Chemical Engineering
BioWith over five years of experience, my work focuses on designing, fabricating, and characterizing flexible nanostructures and organic neuromorphic circuits. My expertise extends to hands-on experience in ISO 4 cleanrooms and fabrication labs, employing a variety of techniques such as electron beam and thermal PVD, ALD, sputtering, photolithography, CVD, profilometry, and wet chemical processing. I have a strong foundation in advanced materials and technologies, including neuromorphic systems, nanofabrication, biosensors, lab-on-a-chip technologies, printing electronics, and organic nanoelectronics.
Currently, I am a postdoctoral researcher at Stanford University, where I explore stretchable neuromorphic e-skin and flexible electronics, particularly for biopotential monitoring and soft robotics applications. My multidisciplinary expertise enables me to contribute to projects that combine neuromorphic computing, smart materials, and neuroscience. These align with my long-term research goals of advancing neuromorphic systems and developing novel technologies at the interface of artificial intelligence, smart materials, and organic electronics. -
William Mitch
Professor of Civil and Environmental Engineering
BioBill Mitch received a B.A. in Anthropology (Archaeology) from Harvard University in 1993. During his studies, he excavated at Mayan sites in Belize and surveyed sites dating from 2,000 B.C. in Louisiana. He switched fields by receiving a M.S. degree in Civil and Environmental Engineering at UC Berkeley. He worked for 3 years in environmental consulting, receiving his P.E. license in Civil Engineering in California. Returning to UC Berkeley in 2000, he received his PhD in Civil and Environmental Engineering in 2003. He moved to Yale as an assistant professor after graduation. His dissertation received the AEESP Outstanding Doctoral Dissertation Award in 2004. At Yale, he serves as the faculty advisor for the Yale Student Chapter of Engineers without Borders. In 2007, he won a NSF CAREER Award. He moved to Stanford University as an associate professor in 2013.
Employing a fundamental understanding of organic chemical reaction pathways, his research explores links between public health, engineering and sustainability. Topics of current interest include:
Public Health and Emerging Carcinogens: Recent changes to the disinfection processes fundamental to drinking and recreational water safety are creating a host of highly toxic byproducts linked to bladder cancer. We seek to understand how these compounds form so we can adjust the disinfection process to prevent their formation.
Global Warming and Oceanography: Oceanic dissolved organic matter is an important global carbon component, and has important impacts on the net flux of CO2 between the ocean and atmosphere. We seek to understand some of the important abiotic chemical reaction pathways responsible for carbon turnover.
Sustainability and Persistent Organic Pollutants (POPs): While PCBs have been banned in the US, we continue to produce a host of structurally similar chemicals. We seem to understand important chemical pathways responsible for POP destruction in the environment, so we can design less persistent and problematic chemicals in the future.
Engineering for Sustainable Wastewater Recycling: The shortage of clean water represents a critical challenge for the next century, and has necessitated the recycling of wastewater. We seek to understand ways of engineer this process in ways to minimize harmful byproduct formation.
Carbon Sequestration: We are evaluating the formation of nitrosamine and nitraminecarcinogens from amine-based carbon capture, as well as techniques to destroy any of these byproducts that form. -
John Mitchell
Mary and Gordon Crary Family Professor in the School of Engineering, and Professor, by courtesy, of Electrical Engineering and of Education
Current Research and Scholarly InterestsProgramming languages, computer security and privacy, blockchain, machine learning, and technology for education
-
Reginald Mitchell
Professor of Mechanical Engineering, Emeritus
BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.
Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.
Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department. -
Paul Mitiguy
Lecturer
BioFrom Milton MA and shaped by La Salettes with Shaker roots, Paul did his undergraduate work at Tufts University and his mechanical engineering graduate work (PhD) at Stanford under Thomas Kane.
As a young adult, Paul worked summers landscaping, farming, logging, and construction, then worked at MIT Lincoln Laboratory, NASA Ames, Knowledge Revolution, and MSC.Software, was a consulting editor for McGraw-Hill (mechanics), and has been a consultant for the software, robotics, biotechnology, energy, automotive, and mechanical/aerospace industries.
He helped develop force/motion software used by more than 12 million people worldwide and translated into 11 spoken languages. These software applications include Interactive Physics, Working Model 2D/3D, MSC.visualNastran 4D (now SimWise), NIH Simbody/OpenSim, and the symbolic manipulators Autolev/MotionGenesis.
Paul currently works on Drake, open-source software developed by TRI (Toyota Research Institute) to simulate robots. In his role as Lead TRI/Stanford Liaison for SAIL (Toyota's Center for AI Research at Stanford), he facilitates research between TRI and Stanford.
At Stanford, Paul greatly enjoys working with students and teaches mechanics (physics/engineering), controls/vibrations, and advanced dynamics & computation/simulation. He has written several books on dynamics, computation, and control (broadly adopted by universities and professionals).
Paul is highly appreciative of support from Stanford alumni Dave Baszucki (Roblox CEO). Paul greatly appreciates having worked with Dave and team in developing internationally acclaimed physics, engineering, and educational software, including Interactive Physics, Working Model, and MSC.visualNastran.
He is very grateful to students, co-instructors (TAs), faculty, and staff.