School of Engineering
Showing 301-350 of 641 Results
-
Ellen Kuhl
Catherine Holman Johnson Director of Stanford Bio-X, Walter B Reinhold Professor in the School of Engineering, Professor of Mechanical Engineering and, by courtesy, of Bioengineering
Current Research and Scholarly Interestscomputaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation
-
Sangjoon Lee
Postdoctoral Scholar, Mechanical Engineering
BioSangjoon "Joon" Lee is a postdoctoral fellow at the Center for Turbulence Research (CTR). He earned his Ph.D. in Mechanical Engineering with a designated emphasis in Computational and Data Science and Engineering from UC Berkeley, under the direction of Professor Philip S. Marcus. His expertise is grounded in Fluid Mechanics and Computational Science, covering areas such as Computational Fluid Dynamics (CFD), vortex/turbulence physics and instabilities, numerical algorithms, and data-driven hydro-/aerodynamic design optimization.
-
Larry John Leifer
Professor of Mechanical Engineering, Emeritus
Current Research and Scholarly InterestsOur "designXlab" at the Stanford Center for Design Research (CDR) has long (30+ years) been focused on Engineering Design Team dynamics at global collaboration scale working with corporate partners in my graduate course ME310ABC. In our most recent studies we have added Neuroscience visualization of brain activity using fMRI and fNIRS. In doing so we have launched "NeuroDesign" as a professional discipline.
-
Sanjiva Lele
Edward C. Wells Professor of the School of Engineering and Professor of Mechanical Engineering
BioProfessor Lele's research combines numerical simulations with modeling to study fundamental unsteady flow phemonema, turbulence, flow instabilities, and flow-generated sound. Recent projects include shock-turbulent boundary layer interactions, supersonic jet noise, wind turbine aeroacoustics, wind farm modeling, aircraft contrails, multi-material mixing and multi-phase flows involving cavitation. He is also interested in developing high-fidelity computational methods for engineering applications.
-
Marc Levenston
Associate Professor of Mechanical Engineering and, by courtesy, of Radiology (Radiological Sciences Laboratory)
Current Research and Scholarly InterestsMy lab's research involves the function, degeneration and repair of musculoskeletal soft tissues, with a focus on meniscal fibrocartilage and articular cartilage. We are particularly interested in the complex interactions between biophysical and biochemical cues in controlling cell behavior, the roles of these interactions in degenerative conditions such as osteoarthritis, and development of tissue engineered 3D model systems for studying physical influences on primary and progenitor cells.
-
Adrian Lew
Professor of Mechanical Engineering
BioProf. Lew's interests lie in the broad area of computational solid mechanics. He is concerned with the fundamental design and mathematical analysis of material models and numerical algorithms.
Currently the group is focused on the design of algorithms to simulate hydraulic fracturing. To this end we work on algorithms for time-integration embedded or immersed boundary methods. -
Jinxin Li
Masters Student in Mechanical Engineering, admitted Autumn 2023
BioA graduate student purchasing Master of Science in Stanford University majoring in Mechanical Engineering.
My acdemic interests are Robotics and Control. -
Christian Linder
Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering
BioChristian Linder is a Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering. Through the development of novel and efficient in-house computational methods based on a sound mathematical foundation, the research goal of the Computational Mechanics of Materials (CM2) Lab at Stanford University, led by Dr. Linder, is to understand micromechanically originated multi-scale and multi-physics mechanisms in solid materials undergoing large deformations and fracture. Applications include sustainable energy storage materials, flexible electronics, and granular materials.
Dr. Linder received his Ph.D. in Civil and Environmental Engineering from UC Berkeley, an MA in Mathematics from UC Berkeley, an M.Sc. in Computational Mechanics from the University of Stuttgart, and a Dipl.-Ing. degree in Civil Engineering from TU Graz. Before joining Stanford in 2013 he was a Junior-Professor of Micromechanics of Materials at the Applied Mechanics Institute of Stuttgart University where he also obtained his Habilitation in Mechanics. Notable honors include a Fulbright scholarship, the 2013 Richard-von-Mises Prize, the 2016 ICCM International Computational Method Young Investigator Award, the 2016 NSF CAREER Award, and the 2019 Presidential Early Career Award for Scientists and Engineers (PECASE). -
Alan Liu
Ph.D. Student in Mechanical Engineering, admitted Winter 2022
Ph.D. Minor, Materials Science and EngineeringBioMy research projects investigate the reliability of conventional silicon PV modules and new-generation perovskite modules, which is important as we make the shift to renewables and away from fossil fuels! The conventional silicon PV reliability project is in collaboration with NREL and Sandia National Labs, with the following techniques used: adhesion testing, DSC, FTIR, Soxhlet extraction (gel content), gel permeation chromatography, rheometer-DMA, TGA, nanoindentation, tensile testing, and computational fracture mechanics modeling. I also help out with the modeling side for the perovskite reliability projects.