School of Engineering
Showing 201-250 of 526 Results
-
Ramesh Johari
Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering
On Partial Leave from 01/01/2025 To 06/30/2025BioJohari is broadly interested in the design, economic analysis, and operation of online platforms, as well as statistical and machine learning techniques used by these platforms (such as search, recommendation, matching, and pricing algorithms).
-
Riley Juenemann
Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2021
BioThird-year Computational and Mathematical Engineering (ICME) PhD Candidate @ Stanford University passionate about research at the intersection of mathematics, computing, and biology.
-
Barbara A. Karanian Ph.D. School of Engineering, previously Visiting Professor
Lecturer, Mechanical Engineering - Design
Lecturer, d.schoolCurrent Role at StanfordLecturer and previously visiting Professor
-
Monroe Kennedy III
Assistant Professor of Mechanical Engineering
Current Research and Scholarly InterestsMy research focus is to develop technology that improves everyday life by anticipating and acting on the needs of human counterparts. My research can be divided into the following sub-categories: robotic assistants, connected devices and intelligent wearables. My Assistive Robotics and Manipulation lab focuses heavily on both the analytical and experimental components of assistive technology design.
-
Thomas Kenny
Senior Associate Dean for Education and Student Affairs and Richard W. Weiland Professor in the School of Engineering
BioKenny's group is researching fundamental issues and applications of micromechanical structures. These devices are usually fabricated from silicon wafers using integrated circuit fabrication tools. Using these techniques, the group builds sensitive accelerometers, infrared detectors, and force-sensing cantilevers. This research has many applications, including integrated packaging, inertial navigation, fundamental force measurements, experiments on bio-molecules, device cooling, bio-analytical instruments, and small robots. Because this research field is multidisciplinary in nature, work in this group is characterized by strong collaborations with other departments, as well as with local industry.
-
Oussama Khatib
Weichai Professor and Professor, by courtesy, of Electrical Engineering
BioRobotics research on novel control architectures, algorithms, sensing, and human-friendly designs for advanced capabilities in complex environments. With a focus on enabling robots to interact cooperatively and safely with humans and the physical world, these studies bring understanding of human movements for therapy, athletic training, and performance enhancement. Our work on understanding human cognitive task representation and physical skills is enabling transfer for increased robot autonomy. With these core capabilities, we are exploring applications in healthcare and wellness, industry and service, farms and smart cities, and dangerous and unreachable settings -- deep in oceans, mines, and space.
-
Butrus Khuri-Yakub
Professor (Research) of Electrical Engineering, Emeritus
BioButrus (Pierre) T. Khuri-Yakub is a Professor of Electrical Engineering at Stanford University. He received the BS degree from the American University of Beirut, the MS degree from Dartmouth College, and the Ph.D. degree from Stanford University, all in electrical engineering. His current research interests include medical ultrasound imaging and therapy, ultrasound neuro-stimulation, chemical/biological sensors, gas flow and energy flow sensing, micromachined ultrasonic transducers, and ultrasonic fluid ejectors. He has authored over 600 publications and has been principal inventor or co-inventor of 107 US and international issued patents. He was awarded the Medal of the City of Bordeaux in 1983 for his contributions to Nondestructive Evaluation, the Distinguished Advisor Award of the School of Engineering at Stanford University in 1987, the Distinguished Lecturer Award of the IEEE UFFC society in 1999, a Stanford University Outstanding Inventor Award in 2004, Distinguished Alumnus Award of the School of Engineering of the American University of Beirut in 2005, Stanford Biodesign Certificate of Appreciation for commitment to educate, mentor and inspire Biodesgin Fellows, 2011, and 2011 recipient of IEEE Rayleigh award.
-
Tasha Kim
Masters Student in Computational and Mathematical Engineering, admitted Autumn 2023
BioTasha grew up in Oceania, Asia, North America, and currently lives in the bay area, California.
-
Peter K. Kitanidis
Professor of Civil and Environmental Engineering
BioKitanidis develops methods for the solution of interpolation and inverse problems utilizing observations and mathematical models of flow and transport. He studies dilution and mixing of soluble substances in heterogeneous geologic formations, issues of scale in mass transport in heterogeneous porous media, and techniques to speed up the decay of pollutants in situ. He also develops methods for hydrologic forecasting and the optimization of sampling and control strategies.
-
Ava Kouhana
Masters Student in Computational and Mathematical Engineering, admitted Autumn 2024
BioHi ! I am an ICME master's degree student at Stanford University. Prior to Stanford, I dedicated six months conducting research at Harvard under the supervision of Dr. Mengyu Wang, focusing primarily on Computer Vision tasks like Image Segmentation and Vision-Language Models. Before joining ICME , I have had the opportunity to work for six months supervised by Stanford Professor Craig Levin, researching the application of Diffusion Models for image super-resolution.
My research interests primarily revolve around computer vision, deep learning, and generative AI, with a growing interest for 3D modeling and video generation. -
Ellen Kuhl
Catherine Holman Johnson Director of Stanford Bio-X, Walter B Reinhold Professor in the School of Engineering, Professor of Mechanical Engineering and, by courtesy, of Bioengineering
Current Research and Scholarly Interestscomputaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation
-
Ching-Yao Lai
Assistant Professor of Geophysics
BioMy group attacks fundamental questions in ice-dynamics, geophysics, and fluid dynamics by integrating mathematical and machine-learned models with observational data. We use our findings to address challenges facing the world, such as advancing our scientific knowledge of ice dynamics under climate change. The length scale of the systems we are interested in varies broadly from a few microns to thousands of kilometers, because the governing physical principles are often universal across a range of length and time scales. We use mathematical models, simulations, and machine learning to study the complex interactions between fluids and elasticity and their interfacial dynamics, such as multiphase flows, flows in deformable structures, and cracks. We extend our findings to tackle emerging topics in climate science and geophysics, such as understand the missing physics that governs the flow of ice sheets in a warming climate. We welcome collaborations across disciplinary lines, from geophysics, engineering, physics, applied math to computer science, since we believe combining expertise and methodologies across fields is crucial for new discoveries.
-
Thomas Lee
Professor of Electrical Engineering
BioProfessor Lee's principal areas of professional interest include analog circuitry of all types, ranging from low-level DC instrumentation to high-speed RF communications systems. His present research focus is on CMOS RF integrated circuit design, and on extending operation into the terahertz realm.
-
Sanjiva Lele
Edward C. Wells Professor of the School of Engineering and Professor of Mechanical Engineering
BioProfessor Lele's research combines numerical simulations with modeling to study fundamental unsteady flow phemonema, turbulence, flow instabilities, and flow-generated sound. Recent projects include shock-turbulent boundary layer interactions, supersonic jet noise, wind turbine aeroacoustics, wind farm modeling, aircraft contrails, multi-material mixing and multi-phase flows involving cavitation. He is also interested in developing high-fidelity computational methods for engineering applications.
-
Adrian Lew
Professor of Mechanical Engineering
BioProf. Lew's interests lie in the broad area of computational solid mechanics. He is concerned with the fundamental design and mathematical analysis of material models and numerical algorithms.
Currently the group is focused on the design of algorithms to simulate hydraulic fracturing. To this end we work on algorithms for time-integration embedded or immersed boundary methods. -
Zetian Li
Masters Student in Computational and Mathematical Engineering, admitted Autumn 2024
Current Research and Scholarly InterestsStatistical Learning, Machine Learning, Bayesian Statistics, Probability Theory