School of Engineering


Showing 1-20 of 37 Results

  • Juan Alonso

    Juan Alonso

    Vance D. and Arlene C. Coffman Professor

    BioProf. Alonso is the founder and director of the Aerospace Design Laboratory (ADL) where he specializes in the development of high-fidelity computational design methodologies to enable the creation of realizable and efficient aerospace systems. Prof. Alonso’s research involves a large number of different manned and unmanned applications including transonic, supersonic, and hypersonic aircraft, helicopters, turbomachinery, and launch and re-entry vehicles. He is the author of over 200 technical publications on the topics of computational aircraft and spacecraft design, multi-disciplinary optimization, fundamental numerical methods, and high-performance parallel computing. Prof. Alonso is keenly interested in the development of an advanced curriculum for the training of future engineers and scientists and has participated actively in course-development activities in both the Aeronautics & Astronautics Department (particularly in the development of coursework for aircraft design, sustainable aviation, and UAS design and operation) and for the Institute for Computational and Mathematical Engineering (ICME) at Stanford University. He was a member of the team that currently holds the world speed record for human powered vehicles over water. A student team led by Prof. Alonso also holds the altitude record for an unmanned electric vehicle under 5 lbs of mass.

  • Manan Arya

    Manan Arya

    Assistant Professor of Aeronautics and Astronautics

    Current Research and Scholarly InterestsManan Arya leads the Morphing Space Structures Laboratory. His research is on structures that can adapt their shape to respond to changing requirements. Examples include deployable structures for spacecraft that can stow in constrained volumes for launch and then unfold to larger sizes in space, terrestrial structures with variable geometry, and morphing robots. Key research thrusts include lightweight fiber-reinforced composite materials to enable innovative designs for flexible structures, and the algorithmic generation of the geometry of morphing structures – the arrangement of stiff and compliant elements – to enable novel folding mechanisms.

    He has published more than 20 journal and conference papers and has been awarded 5 US patents. Prior to joining Stanford, he was a Technologist at the Advanced Deployable Structures Laboratory at the Jet Propulsion Laboratory, California Institute of Technology, where he developed and tested breakthrough designs for space structures, including deployable reflectarrays, starshades, and solar arrays.

  • Juan Blanch

    Juan Blanch

    Sr Research Engineer

    Current Research and Scholarly InterestsMy research focuses on the design of navigation integrity algorithms for safety critical applications (like air navigation and autonomous driving). I am interested in both the design of practical algorithms that provide the required safety margins, and in the theoretical limits on the performance of the integrity monitoring algorithms.

  • Brian Cantwell

    Brian Cantwell

    Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering, Emeritus

    BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.

  • Fu-Kuo Chang

    Fu-Kuo Chang

    Professor of Aeronautics and Astronautics

    BioProfessor Chang's primary research interest is in the areas of multi-functional materials and intelligent structures with particular emphases on structural health monitoring, intelligent self-sensing diagnostics, and multifunctional energy storage composites for transportation vehicles as well as safety-critical assets and medical devices. His specialties include embedded sensors and stretchable sensor networks with built-in self-diagnostics, integrated diagnostics and prognostics, damage tolerance and failure analysis for composite materials, and advanced multi-physics computational methods for multi-functional structures. Most of his work involves system integration and multi-disciplinary engineering in structural mechanics, electrical engineering, signal processing, and multi-scale fabrication of materials. His recent research topics include: Multifunctional energy storage composites, Integrated health management for aircraft structures, bio-inspired intelligent sensory materials for fly-by-feel autonomous vehicles, active sensing diagnostics for composite structures, self-diagnostics for high-temperature materials, etc.

  • Richard Christensen

    Richard Christensen

    Professor (Research) of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus

    BioProfessor Christensen's research is concerned with the mechanics of materials. The behavior of polymers and polymeric fiber composites are areas of specialization. Of particular interest is the field of micro-mechanics that focuses on materials' functionality at intermediate-length scales between atomic and the usual macro scale. Applicable techniques involve the methods of homogenization for all types of composite materials. The intended outcomes of his research are useful means of characterizing the yielding, damage accumulation, and failure behavior of modern materials. A related website has been developed to provide critical evaluations for the mathematical failure criteria used with the various classes of engineering materials. Most of these materials types are employed in aerospace structures and products.

  • Simone D'Amico

    Simone D'Amico

    Associate Professor of Aeronautics and Astronautics

    BioSimone D’Amico is Associate Professor of Aeronautics and Astronautics at Stanford University. He received the B.S. and M.S. degrees from Politecnico di Milano (2003) and the Ph.D. degree from Delft University of Technology (2010). From 2003 to 2014, he was research scientist and team leader at the German Aerospace Center (DLR). There, he gave key contributions to the design, development, and operations of spacecraft formation-flying and rendezvous missions such as GRACE (United States/Germany), TanDEM-X (Germany), PRISMA (Sweden/Germany/France), and PROBA-3 (ESA). From 2014 to 2020, he was Assistant Professor of Aeronautics and Astronautics at Stanford University. He is the Founding director of the Space Rendezvous Laboratory (SLAB), and Satellite Advisor of the Student Space Initiative (SSSI), Stanford’s largest undergraduate organization. He has over 200 scientific publications and 3000 google scholar’s citations, including conference proceedings, peer-reviewed journal articles, and book chapters. D'Amico's research aims at enabling future miniature distributed space systems for unprecedented science and exploration. His efforts lie at the intersection of advanced astrodynamics, GN&C, and space system engineering to meet the tight requirements posed by these novel space architectures. The most recent mission concepts developed by Dr. D'Amico are a miniaturized distributed occulter/telescope (mDOT) system for direct imaging of exozodiacal dust and exoplanets and the Autonomous Nanosatellite Swarming (ANS) mission for characterization of small celestial bodies. D’Amico’s research is supported by NASA, NSF, AFRL, AFOSR, KACST, and Industry. He is Chairman of the NASA's Starshade Science and Technology Working Group (TSWG). He is member of the advisory board of space startup companies and VC edge funds. He is member of the Space-Flight Mechanics Technical Committee of the AAS, Associate Fellow of AIAA, Associate Editor of the AIAA Journal of Guidance, Control, and Dynamics and the IEEE Transactions of Aerospace and Electronic Systems. He is Fellow of the NAE’s US FOE Symposium. Dr. D’Amico was recipient of the Leonardo 500 Award by the Leonardo Da Vinci Society and ISSNAF (2019), the Stanford’s Introductory Seminar Excellence Award (2019 and 2020), the FAI/NAA‘s Group Diploma of Honor (2018), the Exemplary System Engineering Doctoral Dissertation Award by the International Honor Society for Systems Engineering OAA (2016), the DLR’s Sabbatical/Forschungssemester in honor of scientific achievements (2012), the DLR’s Wissenschaft Preis in honor of scientific achievements (2006), and the NASA’s Group Achievement Award for the Gravity Recovery and Climate Experiment, GRACE (2004).

  • Sigrid Close

    Sigrid Close

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioProf. Close's research involves space weather detection and modeling for improved spacecraft designs, and advanced signal processing and electromagnetic wave interactions with plasma for ground-to-satellite communication systems. These topics fall under the Space Situational Awareness (SSA) umbrella that include environmental remote sensing using satellite systems and ground-based radar. Her current efforts are the MEDUSSA (Meteoroid, Energetics, and Debris Understanding for Space Situational Awareness) program, which uses dust accelerators to understand the effects of hypervelocity particle impacts on spacecraft along with Particle-In-Cell simulations, and using ground-based radars to characterize the space debris and meteoroid population remotely. She also has active programs in hypersonic plasmas associated with re-entry vehicles.

  • Charbel Farhat

    Charbel Farhat

    Vivian Church Hoff Professor of Aircraft Structures, James and Anna Marie Spilker Chair of the Department of Aeronautics and Astronautics and Professor of Mechanical Engineering and of Aeronautics and Astronautics

    Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design and analysis of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles (MAVs) with flexible flapping wings and N+3 aircraft with High Aspect Ratio (HAR) wings, layout optimization and additive manufacturing of wing structures, supersonic inflatable aerodynamic decelerators for Mars landing, and the reliable automated carrier landing via model predictive control. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-physics problems, high-order embedded boundary methods, uncertainty quantification, probabilistic machine learning, and efficient projection-based model order reduction as well as other forms of physics-based machine learning for time-critical applications such as design, active control, and digital twins.

  • Grace Gao

    Grace Gao

    Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioGrace Gao is an assistant professor in the Department of Aeronautics and Astronautics at Stanford University. She leads the Navigation and Autonomous Vehicles Laboratory (NAV Lab). Before joining Stanford University, she was faculty at University of Illinois at Urbana-Champaign. She obtained her Ph.D. degree at Stanford University. Her research is on robust and secure perception, localization and navigation with applications to manned and unmanned aerial vehicles, autonomous driving cars, as well as space robotics.

    Prof. Gao has won a number of awards, including the NSF CAREER Award, the Institute of Navigation Early Achievement Award and the RTCA William E. Jackson Award. She received the Distinguished Promotion Award from University of Illinois at Urbana-Champaign. She has won Best Paper/Presentation of the Session Awards 14 times at ION GNSS+ conferences. She received the Dean's Award for Excellence in Research from the College of Engineering, University of Illinois. For her teaching, Prof. Gao has been on the List of Teachers Ranked as Excellent by Their Students at University of Illinois multiple times. She won the College of Engineering Everitt Award for Teaching Excellence, the Engineering Council Award for Excellence in Advising, and AIAA Illinois Chapter’s Teacher of the Year.

  • Kentaro Hara

    Kentaro Hara

    Assistant Professor of Aeronautics and Astronautics

    BioKen Hara is an Assistant Professor of Aeronautics and Astronautics at Stanford University. He received a Ph.D. in Aerospace Engineering and a Graduate Certificate in Plasma Science and Engineering from the University of Michigan, and B.S. and M.S. in Aeronautics and Astronautics from the University of Tokyo. He was a Visiting Research Physicist at Princeton Plasma Physics Laboratory as a Japan Society for the Promotion of Science Postdoctoral Fellow. Professor Hara’s research interests include electric propulsion, low temperature plasmas, plasma physics (plasma-wall interactions, plasma-wave interactions), data-driven modeling, rarefied gas flows, and computational fluid and plasma dynamics. He is a recipient of the Air Force Young Investigator Program Award, the Department of Energy Early Career Award, and the Office of Naval Research Young Investigator Program Award.

  • Antony Jameson

    Antony Jameson

    Professor (Research) of Aeronautics and Astronautics, Emeritus

    BioProfessor Jameson's research focuses on the numerical solution of partial differential equations with applications to subsonic, transonic, and supersonic flow past complex configurations, as well as aerodynamic shape optimization.

  • Mykel Kochenderfer

    Mykel Kochenderfer

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Computer Science

    BioMykel Kochenderfer is Associate Professor of Aeronautics and Astronautics at Stanford University. Prior to joining the faculty, he was at MIT Lincoln Laboratory where he worked on airspace modeling and aircraft collision avoidance, with his early work leading to the establishment of the ACAS X program. He received a Ph.D. from the University of Edinburgh and B.S. and M.S. degrees in computer science from Stanford University. Prof. Kochenderfer is the director of the Stanford Intelligent Systems Laboratory (SISL), conducting research on advanced algorithms and analytical methods for the design of robust decision making systems. Of particular interest are systems for air traffic control, unmanned aircraft, and other aerospace applications where decisions must be made in uncertain, dynamic environments while maintaining safety and efficiency. Research at SISL focuses on efficient computational methods for deriving optimal decision strategies from high-dimensional, probabilistic problem representations. He is the author of "Decision Making under Uncertainty: Theory and Application" and "Algorithms for Optimization", both from MIT Press. He is a third generation pilot.

  • Ilan Kroo

    Ilan Kroo

    Thomas V. Jones Professor in the School of Engineering

    BioProfessor Kroo's research involves work in three general areas: multidisciplinary optimization and aircraft synthesis, unconventional aircraft, and low-speed aerodynamics. Current research in the field of aircraft synthesis, sponsored by NASA and industry, includes the development of a new computational architecture for aircraft design, and its integration with numerical optimization. Studies of unconventional configurations employ rapid turnaround analysis methods in the design of efficient subsonic and supersonic commercial aircraft. Recent research has included investigation of configurations such as joined wings, oblique wings, and tailless aircraft. Nonlinear low-speed aerodynamics studies have focused on vortex wake roll-up, refined computation of induced drag, the design of wing tips, and the aerodynamics of maneuvering aircraft.

  • Nicolas Lee

    Nicolas Lee

    Research Engineer

    BioNicolas Lee is currently a Research Engineer in Aeronautics and Astronautics at Stanford University, working primarily on asteroid resource characterization and CubeSat technologies. Previously, Nicolas was a Ph.D. student at Stanford studying meteoroid impact effects on spacecraft, and a W. M. Keck Institute for Space Studies postdoctoral scholar in aerospace at Caltech, researching technologies for robotically assembled space telecopes, membrane structures for space solar power applications, and small satellite high voltage electronics.