School of Engineering


Showing 1-20 of 2,503 Results

  • Trevor Hastie

    Trevor Hastie

    John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences

    Current Research and Scholarly InterestsFlexible statistical modelling, datamining, bioinformatics, and statistical computing.

  • Stephen Quake

    Stephen Quake

    Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics

    Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.

  • Brian Hargreaves

    Brian Hargreaves

    Associate Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsI am interested in magnetic resonance imaging (MRI) applications including cardiovascular, abdominal, breast and musculoskeletal imaging. These applications require development of faster and more efficient MRI methods that provide improved diagnostic contrast compared with current methods. My work includes novel excitation schemes, efficient imaging methods and reconstruction tools. Please see my research site (above) for most up-to-date information.

  • Ross Shachter

    Ross Shachter

    Associate Professor of Management Science and Engineering

    Current Research and Scholarly InterestsProf. Shachter's research has focused on the representation, manipulation, and analysis of uncertainty and probabilistic reasoning in decision systems. As part of this work, he developed the DAVID influence diagram processing system for the Macintosh. He has developed models scheduling patients for cancer follow-up, and analyzing vaccination strategies for HIV and Helobacter pylori.

  • Geoffrey Gurtner

    Geoffrey Gurtner

    Johnson & Johnson Professor of Surgery and Professor, by courtesy, of Bioengineering and of Materials Science and Engineering

    Current Research and Scholarly InterestsGeoffrey Gurtner's Lab is interested in understanding the mecahnism of new blood vessel growth following injury and how pathways of tissue regeneration and fibrosis interact in wound healing.

  • Ron Fedkiw

    Ron Fedkiw

    Professor of Computer Science and, by courtesy, of Electrical Engineering

    BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.

  • Nicholas Melosh

    Nicholas Melosh

    Associate Professor of Materials Science and Engineering and of Photon Science

    BioMelosh's research is focused on developing methods to detect and control chemical processes on the nanoscale, to create materials that are responsive to their local environment. The research goal incorporates many of the hallmarks of biological adaptability, based on feedback control between cellular receptors and protein expression. Similar artificial networks may be achieved by fabricating arrays of nanoscale devices that can detect and influence their local surroundings through ionic potential, temperature, mechanical motion, capacitance, or electrochemistry. These devices are particularly suited as smart biomaterials, where multiple surface-cell interactions must be monitored and adjusted simultaneously for optimal cell adhesion and growth. Other interests include precise control over self-assembled materials, and potential methods to monitor the diagnostics of complicated chemical systems, such as the effect of drug treatments within patients.

    Research Interests:
    Molecular materials at interfaces
    Directed dynamic self-assembly
    Controlling molecular or biomolecular assembly and behavior
    Influence of local electronic, optical or thermal stimuli

  • Gunnar Carlsson

    Gunnar Carlsson

    Ann and Bill Swindells Professor, Emeritus

    BioDr. Carlsson has been a professor of mathematics at Stanford University since 1991. In the last ten years, he has been involved in adapting topological techniques to data analysis, under NSF funding and as the lead PI on the DARPA “Topological Data Analysis” project from 2005 to 2010. He is the lead organizer of the ATMCS conferences, and serves as an editor of several Mathematics journals

  • David Donoho

    David Donoho

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences

    BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.

    Research Statement:
    My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems.

  • Fei-Fei Li

    Fei-Fei Li

    Associate Professor of Computer Science

    Current Research and Scholarly InterestsHuman vision, high-level visual recognition, computational neuroscience

  • Carlos Bustamante

    Carlos Bustamante

    Professor of Biomedical Data Science, of Genetics and, by courtesy, of Biology

    Current Research and Scholarly InterestsMy research focuses on analyzing genome wide patterns of variation within and between species to address fundamental questions in biology, anthropology, and medicine. My group works on a variety of organisms and model systems ranging from humans and other primates to domesticated plant and animals. Much of our research is at the interface of computational biology, mathematical genetics, and evolutionary genomics.

  • Brad Osgood

    Brad Osgood

    Professor of Electrical Engineering and, by courtesy, of Education

    BioOsgood is a mathematician by training and applies techniques from analysis and geometry to various engineering problems. He is interested in problems in imaging, pattern recognition, and signal processing.

  • Christos Makridis

    Christos Makridis

    Ph.D. Student in Management Science and Engineering, admitted Autumn 2012
    Master of Arts Student in Economics, admitted Autumn 2014
    Ph.D. Minor, Economics

    BioChristos Makridis is a Ph.D. student in the Department of Management Science & Engineering at Stanford University.

  • Jenny Suckale

    Jenny Suckale

    Assistant Professor of Geophysics and, by courtesy, of Civil and Environmental Engineering

    BioBefore joining Stanford in January 2014, I held a position as Lecturer in Applied Mathematics and as a Ziff Environmental Fellow at Harvard. I hold a PhD in Geophysics from MIT and a Master in Public Administration from the Harvard Kennedy School. Prior to joining graduate school, I worked as a scientific consultant for different international organizations aiming to reduce the impact of natural and environmental disasters in vulnerable communities.

    The goal of my research is to advance our basic understanding and predictive capabilities of complex multi-phase flows that are fundamental to Earth science. I pursue this goal by developing original computational methods customized for the problem at hand. The phenomena I explore range from the microscopic to the planetary scale and space a wide variety of geophysics systems such as volcanoes, glaciers, and magma oceans.

    I have taught both undergraduate and graduate courses in scientific, planetary evolution, and natural disasters. Since arriving at Stanford in January 2014, I have co-taught GES 118, Understanding Natural Hazards, Quantifying Risk, Increasing Resilience in Highly Urbanized Regions.

  • Stephen R. Barley

    Stephen R. Barley

    Weiland Professor in the School of Engineering, Emeritus

    Current Research and Scholarly InterestsTechnology's role in occupational and organizational change. Science and innovation in industrial settings. Organizational and occupational culture. Corporate power. Social network theory. Macro-organizational behavior.

  • Debbie Senesky

    Debbie Senesky

    Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioProfessor Senesky's research is centered on the development of micro- and nano-systems for operation within extreme harsh environments. Her laboratory (EXtreme Environment Microsystems Laboratory, XLab) is researching the synthesis of temperature tolerant, chemically resistant, and radiation-hardened wide bandgap semiconductor thin films and nanostructures. These new material sets serve as a platform for the realization of sensor, actuator, and electronic components that can operate and collect data under the most hostile conditions. More specifically, smart and adaptable structures for extreme environments are enabled through the technology developed in her laboratory. Her research efforts support a variety of applications including deep space systems, hypersonic aircrafts, combustion monitoring and subsurface monitoring.

  • Matthias Ihme

    Matthias Ihme

    Associate Professor of Mechanical Engineering

    BioLarge-eddy simulation and modeling of turbulent reacting flows, non-premixed flame, aeroacoustics and combustion generated noise, turbulence and fluid dynamics, numerical methods and high-order schemes.

  • Melissa Valentine

    Melissa Valentine

    Assistant Professor of Management Science and Engineering

    Current Research and Scholarly InterestsMelissa Valentine is an Assistant Professor at Stanford University in the Management Science and Engineering Department, and co-director of the Center for Work, Technology, and Organization (WTO). WTO is a world leader in producing field research (i.e., research that uses actual observation of social phenomena) to develop new understanding about the changing nature of work.

    Prof Valentine's research focus is on understanding work groups and teams in organizations, particularly how they are changing in response to new industry trends and new technologies. She conducts in-depth observational studies to develop new understanding about new forms of work groups and teams. Her work makes contributions to understanding classic and longstanding challenges in designing groups and organizations (e.g., the role of hierarchy, how to implement change, team stability vs. flexibility) but also brings in deep knowledge of how the rise of information technology has made possible new and different team and organizational forms. Her research agenda is organized around two main themes: 1) temporary teams and organizations and 2) groups and teams in complex work organizations.

    Prof. Valentine has won awards for both research and teaching. With her collaborators, she won a Best Paper Award at the CHI Conference on Human Factors in Computing Systems and the Outstanding Paper with Practical Implications award from the Organizational Behavior division of the Academy of Management. In 2013, she won the Organization Science/INFORMS dissertation proposal competition and received her PhD from Harvard University.