School of Humanities and Sciences


Showing 1-25 of 25 Results

  • Blas Cabrera

    Blas Cabrera

    Stanley G. Wojcicki Professor

    BioFor five years up to mid-2015 has been Spokesperson for the SuperCDMS (Cryogenic Dark Matter Search) collaboration with twenty-two member institutions, which mounted a series of experiments in the Soudan mine in northern Minnesota to search for the dark matter in the form of weakly interacting massive particles or WIMPs. This direct detection effort has lead the world in sensitivity for much of the past ten years and utilizes novel cryogenic detectors using germanium and silicon crystals operated below 0.1 K. The completed CDMS II experiment operated 4 kg of germanium and 1 kg of silicon for two years and set the most sensitive limits at the time for spin-independent interactions for WIMPs masses above 40 GeV/c2. The SuperCDMS Soudan experiment operated 9 kg of germanium until the end of calendar 2015.

    He was selected for a three-term as Project Director, through mid 2018, for the approved second generation (G2) SuperCDMS SNOLAB experiment which will operate 30 kg of Ge and Si detectors in the deeper SNOLAB facility in Canada. The project searches for low mass WIMPs (0.1 - 10 GeV/c2) and the cryostat facility will allow future upgrades to search down to the solar neutrino floor. It has recently been approved for full construction by the DOE and NSF.

  • Emmanuel Candes

    Emmanuel Candes

    Barnum-Simons Chair of Math and Statistics, and Professor of Statistics and, by courtesy, of Electrical Engineering

    BioEmmanuel Candès is the Barnum-Simons Chair in Mathematics and Statistics, a professor of electrical engineering (by courtesy) and a member of the Institute of Computational and Mathematical Engineering at Stanford University. Earlier, Candès was the Ronald and Maxine Linde Professor of Applied and Computational Mathematics at the California Institute of Technology. His research interests are in computational harmonic analysis, statistics, information theory, signal processing and mathematical optimization with applications to the imaging sciences, scientific computing and inverse problems. He received his Ph.D. in statistics from Stanford University in 1998.

    Candès has received several awards including the Alan T. Waterman Award from NSF, which is the highest honor bestowed by the National Science Foundation, and which recognizes the achievements of early-career scientists. He has given over 60 plenary lectures at major international conferences, not only in mathematics and statistics but in many other areas as well including biomedical imaging and solid-state physics. He was elected to the National Academy of Sciences and to the American Academy of Arts and Sciences in 2014.

  • Gunnar Carlsson

    Gunnar Carlsson

    Ann and Bill Swindells Professor, Emeritus

    BioDr. Carlsson has been a professor of mathematics at Stanford University since 1991. In the last ten years, he has been involved in adapting topological techniques to data analysis, under NSF funding and as the lead PI on the DARPA “Topological Data Analysis” project from 2005 to 2010. He is the lead organizer of the ATMCS conferences, and serves as an editor of several Mathematics journals

  • Lynette Cegelski

    Lynette Cegelski

    Professor of Chemistry

    Current Research and Scholarly InterestsOur research program is inspired by the challenge and importance of elucidating chemical structure and function in complex biological systems and the need for new strategies to treat infectious diseases. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We have introduced uniquely enabling problem-solving approaches integrating solid-state NMR spectroscopy with microscopy and biochemical and biophysical tools to determine atomic- and molecular-level detail in complex macromolecular assemblies and whole cells and biofilms. We are uncovering new chemistry and new chemical structures produced in nature. We identify small molecules that influence bacterial assembly processes and use these in chemical genetics approaches to learn about bacterial cell wall, amyloid and biofilm assembly.

    Translationally, we have launched a collaborative antibacterial drug design program integrating synthesis, chemical biology, and mechanistic biochemistry and biophysics directed at the discovery and development of new antibacterial therapeutics targeting difficult-to-treat bacteria.

  • Moses Charikar

    Moses Charikar

    Donald E. Knuth Professor and Professor, by courtesy, of Mathematics

    Current Research and Scholarly InterestsEfficient algorithmic techniques for processing, searching and indexing massive high-dimensional data sets; efficient algorithms for computational problems in high-dimensional statistics and optimization problems in machine learning; approximation algorithms for discrete optimization problems with provable guarantees; convex optimization approaches for non-convex combinatorial optimization problems; low-distortion embeddings of finite metric spaces.

  • James K. Chen

    James K. Chen

    Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry

    Current Research and Scholarly InterestsOur laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Xiaoke Chen

    Xiaoke Chen

    Associate Professor of Biology

    Current Research and Scholarly InterestsOur goal is to understand how brain circuits mediate motivated behaviors and how maladaptive changes in these circuits cause mood disorders. To achieve this goal, we focus on studying the neural circuits for pain and addiction, as both trigger highly motivated behaviors, whereas, transitioning from acute to chronic pain or from recreational to compulsive drug use involves maladaptive changes of the underlying neuronal circuitry.

  • Christopher Chidsey

    Christopher Chidsey

    Associate Professor of Chemistry, Emeritus

    Current Research and Scholarly InterestsThe Chidsey group research interest is to build the chemical base for molecular electronics. To accomplish this, we synthesize the molecular and nanoscopic systems, build the analytical tools and develop the theoretical understanding with which to study electron transfer between electrodes and among redox species through insulating molecular bridges

  • Ching Chieh Chou

    Ching Chieh Chou

    Basic Life Res Scientist

    Current Research and Scholarly InterestsI am interested in the cellular strategies to regulate protein folding, transport and aggregation, and the pathogenic pathways leading to proteome remodeling in age-related neurodegenerative diseases. I use molecular imaging, cell reprogramming and multi-omics technologies to address these questions with importance to the aging and neuroscience field.

  • Steven Chu

    Steven Chu

    William R. Kenan Jr. Professor, Professor of Molecular and Cellular Physiology and of Energy Science and Engineering

    Current Research and Scholarly InterestsSynthesis, functionalization and applications of nanoparticle bioprobes for molecular cellular in vivo imaging in biology and biomedicine. Linear and nonlinear difference frequency mixing ultrasound imaging. Lithium metal-sulfur batteries, new approaches to electrochemical splitting of water. CO2 reduction, lithium extraction from salt water

  • Sarah Church

    Sarah Church

    Professor of Physics
    On Leave from 01/01/2024

    Current Research and Scholarly InterestsExperimental & Observational Astrophysics and Cosmology

  • James Collman

    James Collman

    George A. and Hilda M. Daubert Professor of Chemistry, Emeritus

    BioProfessor Emeritus James Collman has made landmark contributions to inorganic chemistry, metal ion biochemistry, homogeneous catalysis, and transition metal organometallic chemistry. He pioneered numerous now-popular research tools to reveal key structural and functional details of metalloenzymes essential to respiration and energy, and hemoglobin and myoglobin, essential to oxygen transport in the blood.

    Born 1932 in Beatrice, Nebraska, James P. Collman studied chemistry at U. Nebraska–Lincoln (B.S. 1954, M.S. 1956). His doctoral work at U. Illinois at Urbana-Champaign (Ph.D., 1958) focused on Grignard reagents. As a faculty member at U. North Carolina, he demonstrated aromatic reactivity in metal acetylacetonates, and he developed metal complexes that hydrolyze peptide bonds under physiological conditions. He came to Stanford University as Professor of Chemistry in 1967. Among many honors, Prof. Collman’s was elected to the National academy of Sciences in 1975, and named California Scientist of the Year in 1983.

    At Stanford, Prof. Collman invented a new paradigm for studying biological systems using functional synthetic analogs of metal-containing enzyme systems, free from the protein coatings that can affect metalloprotein chemical properties. This strategy allowed him to elucidate the intrinsic reactivity of the metal center as well as the effects of protein-metal interactions on biological function.

    One focal point of this research has involved heme-proteins such as the oxygen (O2) carrier hemoglobin (Hb), and the O2-storing protein myoglobin (Mb). Prof. Collman was the first to prepare and characterize stable, functional analogues of the Hb and Mb active sites, which contain an iron derivative of the large flat “porphyrin” ligand. In his “picket fence” porphyrin, groups installed on the periphery block side reactions, which would otherwise degrade the structure. This protected iron complex manifests the unique magnetic, spectroscopic and structural characteristics of the O2-binding Hb and Mb sites, and exhibits very similar O2-binding affinities.

    The Collman Group also prepared functional mimics of the O2-binding/reducing site in a key respiration enzyme, cytochrome c oxidase, CcO, which converts O2 to H2O during biosynthesis of the energy storage molecule ATP. This enzyme must be very selective: partial O2 reduction products are toxic. Prof. Collman invented a powerful synthetic strategy to create analogs of the CcO active site and applied novel electrochemical techniques to demonstrate that these models catalyze the reduction of O2 to water without producing toxic partially-reduced species. He was able to mimic slow, rate-limiting electron delivery by attaching his CcO model to a liquid-crystalline membrane using “click chemistry.” He demonstrated that hydrogen sulfide molecules and heterocycles reversibly bind to the metal centers at CcO’s active site, connecting a synthetic enzyme model to simple molecules that reversibly inhibit respiration. These respiration inhibitors exhibit physiological properties, affecting blood clotting and controlling the effects of the hormone, nitric oxide, NO.

    In addition, Prof. Collman performed fundamental studies of organometallic reactions. He also prepared and characterized homodinuclear and heterodinuclear complexes having metal-metal multiple bonds, and made the first measurements of the rotational barriers found in multiple metal-metal bonds.

    Prof. Collman’s impactful textbook “Principles and Applications of Organotransition Metal Chemistry” has seen multiple editions. His book “Naturally Dangerous: Surprising Facts About Food, Health, and the Environment” explains the science behind everyday life, and received favorable reviews in Nature and The Washington Post.

  • Jonas Cremer

    Jonas Cremer

    Assistant Professor of Biology

    Current Research and Scholarly InterestsWe are a highly interdisciplinary research team, joined in our desire to better understand microbial life. To elucidate how bacterial cells accumulate biomass and grow, we work with the model organism Escherichia coli. We further focus on gut bacteria and their interactions with the human host. Our approaches combine quantitative experimentation and mathematical modeling.

  • Larry Crowder

    Larry Crowder

    Edward Ricketts Provostial Professor, Professor of Oceans, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology

    Current Research and Scholarly InterestsEcology, conservation, fisheries, protected species, ecosystem-based management

  • Bianxiao Cui

    Bianxiao Cui

    Job and Gertrud Tamaki Professor of Chemistry

    Current Research and Scholarly InterestsOur objective is to develop new biophysical methods to advance current understandings of cellular machinery in the complicated environment of living cells. Currently, we are focusing on four research areas: (1) Membrane curvature at the nano-bio interface; (2) Nanoelectrode arrays (NEAs) for scalable intracellular electrophysiology; (3) Electrochromic optical recording (ECORE) for neuroscience; and (4) Optical control of neurotrophin receptor tyrosine kinases.

  • Yi Cui

    Yi Cui

    Fortinet Founders Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, Senior Fellow at Woods and Professor, by courtesy, of Chemistry

    BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.

  • Martha S. Cyert

    Martha S. Cyert

    Dr. Nancy Chang Professor

    Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.