School of Humanities and Sciences
Showing 1-20 of 46 Results
-
Chiara Sabatti
Professor of Biomedical Data Science and of Statistics
Current Research and Scholarly InterestsStatistical models and reasoning are key to our understanding of the genetic basis of human traits. Modern high-throughput technology presents us with new opportunities and challenges. We develop statistical approaches for high dimensional data in the attempt of improving our understanding of the molecular basis of health related traits.
-
Julia Salzman
Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology
Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes
-
Robert Sapolsky
John A. and Cynthia Fry Gunn Professor, Professor of Biology, of Neurology and Neurological Sciences and of Neurosurgery
Current Research and Scholarly InterestsNeuron death, stress, gene therapy
-
Johannes Daniel Scharwies
Basic Life Research Scientist
BioJohannes received his BSc from the Leibniz Universität Hannover (Germany) in Plant Biotechnology in the Fruit Science laboratory of Prof. Moritz Knoche. Inspired by research on water relations of fruit in the Knoche laboratory, Johannes joined the group of Prof. Stephen Tyerman at The University of Adelaide (Australia) with funding through the German Academic Exchange Service. Initially, his work focused on hydraulic properties of grape clusters for which he received his MSc in Agricultural Science. Afterwards, he joined the ARC Centre of Excellence in Plant Energy Biology through the Tyerman laboratory and specialised in molecular plant physiology by studying the role of aquaporins in plant responses to drought for a PhD. He investigated aquaporins, which are molecular channels in plant membranes that provide a gating mechanism for water fluxes and other small molecules, through a combination of gene expression analysis and utilization of transgenic overexpression and CRISPR-Cas9 knockout lines. His work was funded by the highly competitive Adelaide Scholarship International and a Supplementary Scholarship provided by the ARC Centre of Excellence in Plant Energy Biology. In April 2018, Johannes joined the laboratory of Prof. José Dinneny at Stanford University as a Postdoctoral Scholar.
Johannes' research focuses on plant hydraulics from a molecular scale up to whole plants. He is interested on how plants perceive and adapt to changes in the environment in particular related to water. This ranges from developmental decisions to molecular control of water movement, for example through aquaporins.
In the group of Prof. José Dinneny, he is investigating how lateral root branching responds to moisture availability, a phenomenon termed hydropatterning. He uses his expertise to design novel phenotyping systems to characterise lateral root branching across a wide range of diverse corn inbred lines. These technologies enable the use of population genetics approaches to detect genotype-phenotype associations with the aim to understand causal genetic variants and study how phenotypic plasticity is shaped through breeding. -
Monika Schleier-Smith
Associate Professor of Physics
Current Research and Scholarly InterestsIn between the few-particle realm where we have mastered quantum mechanics and the macroscopic domain describable by classical physics, there lies a broad swath of territory where quantum effects are relevant but still largely out of our control and partly beyond our comprehension. This territory includes metrological instruments whose precision is limited by the quantum projection noise of millions of atoms; and materials whose bulk properties emerge from many-body interactions intractable to simulation on classical computers. Professor Schleier-Smith’s research aims to advance our control and understanding of many-particle quantum systems by engineering new quantum states and Hamiltonians with ensembles of laser-cooled atoms.
-
Mark J. Schnitzer
Professor of Biology, of Applied Physics and of Neurosurgery (Adult Neurosurgery)
Current Research and Scholarly InterestsThe goal of our research is to advance experimental paradigms for understanding normal cognitive and disease processes at the level of neural circuits, with emphasis on learning and memory processes. To advance these paradigms, we invent optical brain imaging techniques, several of which have been widely adopted. Our neuroscience studies combine these imaging innovations with behavioral, electrophysiological, optogenetic and computational methods, enabling a holistic approach to brain science.
-
Molly Schumer
Associate Professor of Biology
BioMolly Schumer is an Assistant Professor in Biology. She is interested in genetics and evolutionary biology. After receiving her PhD at Princeton, she did her postdoctoral work at Columbia and was a Junior Fellow in the Harvard Society of Fellows and Hanna H. Gray Fellow at Harvard Medical School. Current research in the lab centers on understanding the genetic mechanisms of evolution, with a focus on natural populations.
-
Jennifer Schwartz Poehlmann
Senior Lecturer of Chemistry
BioReaching out to Stanford’s diverse body of students and beyond to share the excitement of scientific discovery has been a growing passion for Dr. Jennifer Schwartz Poehlmann. In addition to coordinating and co-teaching Stanford’s freshmen chemistry sequence, she takes a leadership role in developing training programs for teaching assistants and enhancing classroom and lab experiences for undergraduates, while also providing STEM learning opportunities for incoming freshmen and local high school students.
Jennifer Schwartz Poehlmann studied chemistry at Washington University in Saint Louis Missouri (A.B. 2002) before coming to Stanford University as a graduate student (Ph.D. 2008). Her thesis work under Prof. Edward Solomon addressed structural contributions to reactivity in active sites of non-heme di-iron enzymes, including ferritins. She joined the Stanford Center (now Vice Provost) for Teaching and Learning as a Teaching Fellow in 2008. In 2009, she became Lecturer and Introductory Course Coordinator for the Department of Chemistry, and in 2011 was promoted to Senior Lecturer. She has received multiple awards for her teaching and training work, including the Walter J. Gores Award for Excellence in Teaching, Dean’s Award for Achievements in Teaching, Hoagland Award Fund for Innovations in Undergraduate Teaching, and Society of Latino Engineers and School of Engineering’s Professor of the Year Award.
Teaching
Dr. Schwartz coordinates and co-teaches the introductory course sequence of Chem31A, 31B, and 33 for about 450 students each year. She has also created a set of companion courses (Chem31A-C, 31B-C, and 33-C) designed to provide motivated students an opportunity to build stronger study habits and problem solving tools that help them persevere in the sciences regardless of prior science background. In parallel, she has been involved in the creation and teaching of the Leland Scholars Program, which facilitates the transition to college for incoming freshman intending to study in STEM or pre-health fields.
Instructor Training
Dr. Schwartz has always believed that well-prepared and enthusiastic teachers inspire and motivate learning, yet excellent teaching requires training, feedback, reflection and support. She has worked both within the department and more broadly to help ensure that teaching assistants throughout the university receive the training, practice and mentorship they need to grow and excel as educators. She previously directed the Department of Chemistry’s TA Training program and, with the Vice Provost for Teaching and Learning, co-founded and directs the Mentors in Teaching Program, MinT, which provides training and resources to teaching mentors from more than 15 departments on campus. Through MinT, advanced graduate students learn effective ways to mentor TAs, through mid-quarter feedback, classroom observation, establishment of teaching goals, and workshops that enable new TAs to better engage with students in the classroom.
Enhanced Learning Experiences
Dr. Schwartz has been heavily involved in the development of hands-on, guided-inquiry lab activities that are now fully integrated into lab/lecture courses throughout the introductory general and organic chemistry sequence. Through the “Inspiring Future Scientists in Chemistry” Outreach Program, she is also helping to bring the excitement of exploring real-world chemistry into local high schools. She works with local high school teachers to design lab experiences that reinforce and compliment the chemistry concepts in the California State curriculum. Stanford Chemistry students take these activities to local high schools, providing hundreds of students the opportunity to work with enthusiastic young scientists while getting hands-on experience in chemistry. The program aims to demonstrate how chemistry relates to the ‘real world’ and to promote an appreciation for both science and higher education. -
H Schwettman
Professor of Physics, Emeritus
BioAlan received his PhD from Rice University. He has acted as a research associate, associate professor, and professor at Stanford University. Research interests include the development of optical techniques that exploit the unique capabilities of the Free Electron Laser (FEL) in materials and biomedical research.
-
Naima G. Sharaf
Assistant Professor of Biology and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsResearch in the lab bridges biology, microbiology, and immunology to translate lipoprotein research into therapeutics
-
Carla Shatz
Sapp Family Provostial Professor and Professor of Biology and of Neurobiology
On Leave from 09/01/2024 To 08/31/2025Current Research and Scholarly InterestsThe goal of research in the Shatz Laboratory is to discover how brain circuits are tuned up by experience during critical periods of development both before and after birth by elucidating cellular and molecular mechanisms that transform early fetal and neonatal brain circuits into mature connections. To discover mechanistic underpinnings of circuit tuning, the lab has conducted functional screens for genes regulated by neural activity and studied their function for vision, learning and memory.
-
Kang Shen
Vincent V.C. Woo Director, Wu Tsai Neurosciences Institute, Frank Lee and Carol Hall Professor and Professor of Biology and of Pathology
Current Research and Scholarly InterestsThe connectivity of a neuron (its unique constellation of synaptic inputs and outputs) is essential for its function. Neuronal connections are made with exquisite accuracy between specific types of neurons. How each neuron finds its synaptic partners has been a central question in developmental neurobiology. We utilize the relatively simple nervous system of nematode C. elegans, to search for molecules that can specify synaptic connections and understand the molecular mechanisms of synaptic as
-
Zhi-Xun Shen
Paul Pigott Professor of Physical Sciences, Professor of Applied Physics, of Physics and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsDr. Shen's main research interest lies in the area of condensed matter and materials physics, as well as the applications of materials and devices. He develops photon based innovative instrumentation and advanced experimental techniques, ranging from angle-resolved photoemission to microwave imaging, soft x-ray scattering and time domain spectroscopy and scattering. He has created a body of literature that advanced our understanding of quantum materials, including superconductors, semiconductors, novel magnets, topological insulators, novel carbon and electron emitters. He is best known for his discoveries of the momentum structure of anisotropic d-wave pairing gap and anomalous normal state pseudogap in high temperature superconductors. He has further leveraged the advanced characterization tool to make better materials through thin film and interface engineering.
-
Stephen Shenker
Richard Herschel Weiland Professor
Current Research and Scholarly InterestsProfessor Shenker’s research focuses on quantum gravity, in particular string theory and M theory, with an emphasis on nonperturbative aspects.