School of Humanities and Sciences
Showing 601-700 of 1,948 Results
-
Tony Heinz
Director, Edward L. Ginzton Laboratory, Professor of Applied Physics, of Photon Science, and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsElectronic properties and dynamics of nanoscale materials, ultrafast lasers and spectroscopy.
-
H. Craig Heller
Lorry I. Lokey/Business Wire Professor
Current Research and Scholarly InterestsNeurobiology of sleep, circadian rhythms, regulation of body temperature, mammalian hibernation, and human exercise physiology. Currently applying background in sleep and circadian neurobiology the understanding and correcting the learning disability of Down Syndrome.
-
Wendy Herbst
Postdoctoral Scholar, Biology
BioNeuroscience Postdoc in Kang Shen Lab, Department of Biology
-
Luis Hernandez-Nunez
Assistant Professor of Biology
BioLuis Hernandez-Nunez is a tenure-track professor of biology, a Warren Alpert Distinguished Scholar, a Branco Weiss faculty fellow, and a Burroughs Wellcome Career Award faculty fellow at Stanford University, where he leads the Hernandez-Nunez Lab. Luis’ research focuses on the circuit mechanisms underlying heart-brain interactions and on organismal circuits that implement multiorgan coordination and feedback control. Luis did his postdoctoral training with Florian Engert supported by an LSRF fellowship. Luis obtained his Ph.D. in Systems, Synthetic, and Quantitative Biology from Harvard in 2020. He conducted his doctoral research in Aravinthan Samuel’s lab, where he identified molecules, cells, and circuits that mediate thermal homeostasis in larval Drosophila. Before graduate school, Luis was an undergraduate and then a postbac researcher at Thierry Emonet’s lab at Yale University. Before moving to the U.S., Luis studied mechatronics engineering at the National University of Engineering in Peru.
-
Gustavo Daniel Hernandez-Luciano
Undergraduate, Biology
BioUndergraduate Student in Biology
-
Lambertus Hesselink
Professor of Electrical Engineering and, by courtesy of Applied Physics
BioHesselink's research encompasses nano-photonics, ultra high density optical data storage, nonlinear optics, optical super-resolution, materials science, three-dimensional image processing and graphics, and Internet technologies.
-
Keith Hodgson
David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science
On Leave from 10/01/2025 To 03/31/2026BioCombining inorganic, biophysical and structural chemistry, Professor Keith Hodgson investigates how structure at molecular and macromolecular levels relates to function. Studies in the Hodgson lab have pioneered the use of synchrotron x-radiation to probe the electronic and structural environment of biomolecules. Recent efforts focus on the applications of x-ray diffraction, scattering and absorption spectroscopy to examine metalloproteins that are important in Earth’s biosphere, such as those that convert nitrogen to ammonia or methane to methanol.
Keith O. Hodgson was born in Virginia in 1947. He studied chemistry at the University of Virginia (B.S. 1969) and University of California, Berkeley (Ph.D. 1972), with a postdoctoral year at the ETH in Zurich. He joined the Stanford Chemistry Department faculty in 1973, starting up a program of fundamental research into the use of x-rays to study chemical and biological structure that made use of the unique capabilities of the Stanford Synchrotron Radiation Lightsource (SSRL). His lab carried out pioneering x-ray absorption and x-ray crystallographic studies of proteins, laying the foundation for a new field now in broad use worldwide. In the early eighties, he began development of one of the world's first synchrotron-based structural molecular biology research and user programs, centered at SSRL. He served as SSRL Director from 1998 to 2005, and SLAC National Accelerator Laboratory (SLAC) Deputy Director (2005-2007) and Associate Laboratory Director for Photon Science (2007-2011).
Today the Hodgson research group investigates how molecular structure at different organizational levels relates to biological and chemical function, using a variety of x-ray absorption, diffraction and scattering techniques. Typical of these molecular structural studies are investigations of metal ions as active sites of biomolecules. His research group develops and utilizes techniques such as x-ray absorption and emission spectroscopy (XAS and XES) to study the electronic and metrical details of a given metal ion in the biomolecule under a variety of natural conditions.
A major area of focus over many years, the active site of the enzyme nitrogenase is responsible for conversion of atmospheric di-nitrogen to ammonia. Using XAS studies at the S, Fe and Mo edge, the Hodgson group has worked to understand the electronic structure as a function of redox in this cluster. They have developed new methods to study long distances in the cluster within and outside the protein. Studies are ongoing to learn how this cluster functions during catalysis and interacts with substrates and inhibitors. Other components of the protein are also under active study.
Additional projects include the study of iron in dioxygen activation and oxidation within the binuclear iron-containing enzyme methane monooxygenase and in cytochrome oxidase. Lab members are also investigating the role of copper in electron transport and in dioxygen activation. Other studies include the electronic structure of iron-sulfur clusters in models and enzymes.
The research group is also focusing on using the next generation of x-ray light sources, the free electron laser. Such a light source, called the LCLS, is also located at SLAC. They are also developing new approaches using x-ray free electron laser radiation to image noncrystalline biomolecules and study chemical reactivity on ultrafast time scales. -
Leo Hollberg
Professor (Research) of Physics and of Geophysics
BioHow can we make optimal use of quantum systems (atoms, lasers, and electronics) to test fundamental physics principles, enable precision measurements of space-time and when feasible, develop useful devices, sensors, and instruments?
Professor Hollberg’s research objectives include high precision tests of fundamental physics as well as applications of laser physics and technology. This experimental program in laser/atomic physics focuses on high-resolution spectroscopy of laser-cooled and -trapped atoms, non-linear optical coherence effects in atoms, optical frequency combs, optical/microwave atomic clocks, and high sensitivity trace gas detection. Frequently this involves the study of laser noise and methods to circumvent measurement limitations, up to, and beyond, quantum limited optical detection. Technologies and tools utilized include frequency-stabilized lasers and chip-scale atomic devices. Based in the Hansen Experimental Physics Laboratory (HEPL), this research program has strong, synergistic, collaborative connections to the Stanford Center on Position Navigation and Time (SCPNT). Research directions are inspired by experience that deeper understanding of fundamental science is critical and vital in addressing real-world problems, for example in the environment, energy, and navigation. Amazing new technologies and devices enable experiments that test fundamental principles with high precision and sometimes lead to the development of better instruments and sensors. Ultrasensitive optical detection of atoms, monitoring of trace gases, isotopes, and chemicals can impact many fields. Results from well-designed experiments teach us about the “realities” of nature, guide and inform, occasionally produce new discoveries, frequently surprise, and almost always generate new questions and perspectives. -
Susan Holmes
Professor of Statistics, Emerita
Current Research and Scholarly InterestsOur lab has been developing tools for the analyses of complex data structures, extending work on multivariate data to structured multitable table that include graphs, networks and trees as well as categorical and continuous measurements.
We created and support the Bioconductor package phyloseq for the analyses of microbial ecology data from the microbiome. We have specialized in developing interactive graphical visualization tools for doing reproducible research in biology. -
Brice Huang
Postdoctoral Scholar, Statistics
BioBrice Huang is a Stanford Science Fellow and NSF postdoctoral fellow in the Department of Statistics, hosted by Andrea Montanari. He received his PhD in Electrical Engineering and Computer Science at MIT advised by Guy Bresler and Nike Sun.
-
Wray Huestis
Professor of Chemistry, Emerita
BioProfessor Wray Huestis’ research concerns the molecular mechanisms whereby cells control their shape, motility, deformability and the structural integrity of their membranes. Metabolic control of interprotein and protein-lipid interactions is studied by a variety of biochemical, spectroscopic and radiochemical techniques, including fluorescence and EPR spectrometry, autoradiography and electron microscopy. The role of lipid metabolism and transport in regulating the fluid dynamics of cell suspensions (red blood cells, platelets, lymphocytes) is examined using circulating cells and cells grown in culture. Cell-cell and cell-liposome interactions are studied using model membrane systems with widely differing physical properties. Complexes of liposomes and encapsulated viruses are used as selective vectors to deliver water-soluble compounds across the membranes of intact cells. The particular projects described in the listed publications have as a common goal an understanding of the molecular workings of the cell membrane.
-
Pamela Hung
Adm Assoc 3, Biology
Current Role at StanfordAdministrative Associate at Biology Department
-
Jamie Imam
Advanced Lecturer
BioDr. Jamie Imam received her bachelor's degree in Biological Sciences and Psychology from Carnegie Mellon University and her Ph.D. in Genetics from the Stanford School of Medicine. In addition to teaching, Jamie is the Director of the Honors Program in Biology and a Lecturer Consultant with the Center for Teaching and Learning. When she is not teaching or doing science outreach, she enjoys reading, baking and spending time outdoors with her family.
-
Aurora Ireland
Postdoctoral Scholar, Physics
BioAurora Ireland is broadly interested in early universe cosmology and high energy particle theory. She completed her PhD at the University of Chicago in 2024. Prior in 2018, she obtained a masters degree from the Perimeter Institute for Theoretical Physics.
-
Kent Irwin
Director, Hansen Experimental Physics Laboratory (HEPL), Professor of Physics, of Particle Physics and Astrophysics and of Photon Science
BioIrwin Group web page:
https://irwinlab.stanford.edu/ -
Maria-Romina Ivan
Szego Assistant Professor of Mathematics
Current Research and Scholarly InterestsMy research lies in the area of combinatorics, with particular focus on Ramsey theory, extremal combinatorics and poset saturation.
-
Christine Jacobs-Wagner
Dennis Cunningham Professor, Professor of Biology and of Microbiology and Immunology
BioChristine Jacobs-Wagner is a Dennis Cunningham Professor in the Department of Biology and the ChEM-H Institute at Stanford University. She is interested in understanding the fundamental mechanisms and principles by which cells, and, in particular, bacterial cells, are able to multiple. She received her PhD in Biochemistry in 1996 from the University of Liège, Belgium where she unraveled a molecular mechanism by which some bacterial pathogens sense and respond to antibiotics attack to achieve resistance. For this work, she received multiple awards including the 1997 GE & Science Prize for Young Life Scientists. During her postdoctoral work at Stanford Medical School, she demonstrated that bacteria can localize regulatory proteins to specific intracellular regions to control signal transduction and the cell cycle, uncovering a new, unsuspected level of bacterial regulation.
She started her own lab at Yale University in 2001. Over the years, her group made major contributions in the emerging field of bacterial cell biology and provided key molecular insights into the temporal and spatial mechanisms involved in cell morphogenesis, cell polarization, chromosome segregation and cell cycle control. For her distinguished work, she received the Pew Scholars award from the Pew Charitable Trust, the Woman in Cell Biology Junior award from the American Society of Cell Biology and the Eli Lilly award from the American Society of Microbiology. She held the Maxine F. Singer and William H. Fleming professor chairs at Yale. She was elected to the Connecticut academy of Science, the American Academy of Microbiology and the National Academy of Sciences. She has been an investigator of the Howard Hughes Medical Institute since 2008.
Her lab moved to Stanford in 2019. Current research examines the general principles and spatiotemporal mechanisms by which bacterial cells replicate, using Caulobacter crescentus and Escherichia coli as models. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease