School of Medicine
Showing 1-10 of 30 Results
-
Shannon Walters
Executive Technical Director, Radiology - Diagnostic Radiology
Current Role at StanfordI consider myself an innovation enabler and workflow optimization enthusiast. At Stanford 3D and Quantitative Imaging Lab, I work closely with healthcare providers, researchers, and educators to enable effective health visualization. Recent innovations are of particular interest to me; such as 3D Printing, immersive volumetric visualization, clinical implementation of validated AI algorithms, and the general concept of reporting concise changes over time.
-
Adam Wang
Assistant Professor of Radiology and, by courtesy, of Electrical Engineering
BioMy research group develops technologies for advanced x-ray and CT imaging, including artificial intelligence for CT acquisition, reconstruction, and image processing; spectral imaging, including photon counting CT (PCCT) and dual-layer flat-panel detectors; novel system and detector designs; and their applications in diagnostic imaging and image-guided procedures. I am also the Director of the Photon Counting CT Lab, Zeego Lab, and Tabletop X-Ray Lab.
I completed my PhD in Electrical Engineering at Stanford, developing strategies for maximizing the information content of dual energy CT and photon counting detectors. I then pursued a postdoctoral fellowship at Johns Hopkins in the I-STAR Lab, developing reconstruction and registration methods for x-ray based image-guided surgery. I was then a Senior Scientist at Varian Medical Systems, developing x-ray/CT methods for image-guided radiation therapy, before returning to Stanford in 2018, where I now lead a comprehensive research program in advanced x-ray and CT imaging systems and methods, with funding from NIH, DOD, DOE, and industry partners. -
Jie Wang
Postdoctoral Scholar, Radiology
BioDr. Jie Wang is deeply passionate about magnetic nanotechnology, including magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magnetic nanoparticles (MNPs), magnetic nanofluid hyperthermia (MNFH), magnetic biosensors, etc., for biomedical applications. His dissertation focuses on MRI-guided magnetic hyperthermia for cancer theranostics. Currently, his research interests include developing enzyme-activable nanoparticles for brain cancer theranostics and employing multi-modal imaging modalities to investigate the interaction between nanoparticles and biosystems (nano-bio interaction) within tumor microenvironment.