School of Medicine
Showing 1-54 of 54 Results
-
Ranjana Advani
Saul A. Rosenberg, MD, Professor of Lymphoma
Current Research and Scholarly InterestsClinical investigation in Hodgkin's disease, non-Hodgkin's Lymphomas and cutaneous lymphomas. Experimental therapeutics with novel chemotherapy and biologically targeted therapies.
The research program is highly collaborative with radiation oncology, industry, pathology and dermatology. -
Rajni Agarwal
Professor of Pediatrics (Stem Cell Transplantation)
On Leave from 11/04/2024 To 01/05/2025Current Research and Scholarly InterestsHematopoietic Stem cell biology-created a SCID mouse model to study engraftment of cord blood derived hematopoietic cells and use of this model to develop gene transfer technology for Fanconi anemia.
Clinical research interests are to develop new protocols to reduce Toxicity from the conditioning regimens for stem cell transplants, reducing graft vs host disease, treatment of viral infections post transplant and use of manipulated HSC graft in patients who receive haplo donor transplants. -
Michael Angelo
Associate Professor of Pathology
BioMichael Angelo, MD PhD is a board-certified pathologist and assistant professor in the department of Pathology at Stanford University School of Medicine. Dr. Angelo is a leader in high dimensional imaging with expertise in tissue homeostasis, tumor immunology, and infectious disease. His lab has pioneered the construction and development of Multiplexed Ion Beam Imaging by time of flight (MIBI-TOF). MIBI-TOF uses secondary ion mass spectrometry and metal-tagged antibodies to achieve rapid, simultaneous imaging of dozens of proteins at subcellular resolution. In recognition of this achievement, Dr. Angelo received the NIH Director’s Early Independence award in 2014. His lab has since used this novel technology to discover previously unknown rule sets governing the spatial organization and cellular composition of immune, stromal, and tumor cells within the tumor microenvironment in triple negative breast cancer. These findings were found to be predictive of single cell expression of several immunotherapy drug targets and of 10-year overall survival. This effort has led to ongoing work aimed at elucidating structural mechanisms in the TME that promote recruitment of cancer associated fibroblasts, tumor associated macrophages, and extracellular matrix remodeling. Dr. Angelo is the recipient of the 2020 DOD Era of Hope Award and a principal investigator on multiple extramural awards from the National Cancer Institute, Breast Cancer Research Foundation, Parker Institute for Cancer Immunotherapy, the Bill and Melinda Gates Foundation, and the Human Biomolecular Atlas (HuBMAP) initiative.
-
Sally Arai
Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsResearch interest in utilizing post-transplant adoptive cellular immunotherapy to reduce GVHD and relapse in patients with high risk hematologic malignancies.
-
Sean Bendall
Associate Professor of Pathology
Current Research and Scholarly InterestsOur goal is to understand the mechanisms regulating the development of human systems. Drawing on both pluripotent stem cell biology, hematopoiesis, and immunology, combined with novel high-content single-cell analysis (CyTOF – Mass Cytometry) and imagining (MIBI-Multiplexed Ion Beam Imaging) we are creating templates of ‘normal’ human cellular behavior to both discover novel regulatory events and cell populations as well as understand dysfunctional processes such as cancer.
-
Jonathan S. Berek, MD, MMSc
Laurie Kraus Lacob Professor
BioLaurie Kraus Lacob Professor
Stanford University School of Medicine
Director, Stanford Women’s Cancer Center
Senior Advisor, Stanford Cancer Institute
Executive Director, Stanford Health Communication Initiative
Director, MedArts Films
Stanford Center for Health Education
Stanford University -
Alice Bertaina MD, PhD
Lorry I. Lokey Professor
Current Research and Scholarly InterestsDr. Bertaina is a highly experienced clinician and will play a key role in supporting Section Chief Dr. Rajni Agarwal and Clinical Staff in the Stem Cell Transplant Unit at Lucile Packard Children’s Hospital. She will also continue her research on immune recovery and miRNA, understanding the mechanisms underlying immune reconstitution, Graft-versus-Host Disease (GvHD), and leukemia relapse after allogeneic HSCT in pediatric patients affected by hematological malignant and non-malignant disorders.
-
Allison Betof Warner, MD, PhD
Assistant Professor of Medicine (Oncology)
BioDr. Betof Warner is a board-certified, fellowship-trained medical oncologist with the Cutaneous Oncology Program and an Assistant Professor in the Department of Medicine, Division of Medical Oncology. She also serves as Director of Melanoma Medical Oncology, Director of Solid Tumor Cellular Therapy, and co-Director of the Pigmented Lesion and Melanoma Program.
Clinical interests of Dr. Betof Warner include treatment of advanced melanoma, immunotherapy, and cellular therapies for solid tumors. She has been a pioneer in the use of commercial tumor infiltrating lymphocyte (TIL) therapy, which is expected to become standard of care for immunotherapy-refractory melanoma.
Dr. Betof Warner serves as the leader of the Melanoma & Cutaneous Oncology Clinical Research Group, with research interests focused on tumor response to immunotherapy. She has been the principal investigator of multiple clinical trials focusing on immunotherapy-refractory melanoma and is internationally recognized for her expertise in central nervous system metastases and the use of novel cellular therapies. Dr. Betof Warner collaborates with investigators around the world in surgery, neuro-oncology, neurosurgery, radiation oncology, and pathology. She has received funding and awards for her clinical and translational investigative work from multiple high-profile organizations, including the American Society of Clinical Oncology (ASCO), National Institutes of Health (NIH), and Melanoma Research Foundation.
In addition to publishing her research in peer-reviewed journals, Dr. Betof Warner has served as an editorial and grant reviewer for multiple organizations, including the Melanoma Research Foundation. She has authored book chapters and case reports, contributed to national guidelines, and presented her findings at regional, national, and international meetings.
Dr. Betof Warner is a member of multiple professional organizations and societies, including the American Association for Cancer Research, the American Society of Clinical Oncology, and the Society for Immunotherapy of Cancer, where she serves on the Early Career Scientist Committee. She is also a member of the American College of Sports Medicine and the European Society for Medical Oncology. -
Ami Bhatt
Professor of Medicine (Hematology) and of Genetics
Current Research and Scholarly InterestsThe Bhatt lab is exploring how the microbiota is intertwined with states of health and disease. We apply the most modern genetic tools in an effort to deconvolute the mechanism of human diseases.
-
Scott D. Boyd, MD PhD
Stanford Professor of Food Allergy and Immunology and Professor of Pathology
Current Research and Scholarly InterestsOur goal is to understand the lymphocyte genotype-phenotype relationships in healthy human immunity and in immunological diseases. We apply new technologies and data analysis approaches to this challenge, particularly high-throughput DNA sequencing and single-cell monoclonal antibody generation, in parallel with other functional assays.
-
Eugene Butcher
Klaus Bensch Professor of Pathology
Current Research and Scholarly InterestsOur interests include:
1) The physiology and function of lymphocyte homing in local and systemic immunity;
2) Biochemical and genetic studies of molecules that direct leukocyte recruitment;
3) Chemotactic mechanisms and receptors in vascular and immune biology;
4) Vascular control of normal and pathologic inflammation and immunity;
5) Systems biology of immune cell trafficking and programming in tumor immunity. -
Yueh-hsiu Chien
Professor of Microbiology & Immunology
Current Research and Scholarly InterestsContribution of T cells to immunocompetence and autoimmunity; how the immune system clears infection, avoids autoimmunity and how infection impacts on the development of immune responses.
-
Kyle Gabriel Daniels
Assistant Professor of Genetics
BioKyle obtained his BS in Biochemistry from the University of Maryland College Park in 2010, conducting undergraduate research with Dr. Dorothy Beckett, PhD. He obtained his PhD in Biochemistry with a certificate in Structural Biology and Biophysics. His dissertation is titled "Kinetics of Coupled Binding and Conformational Change in Proteins and RNA" and was completed in the laboratory of Dr. Terrence G. Oas, PhD. Kyle performed postdoctoral training with Dr. Wendell A. Lim, PhD at UCSF studying how CAR T cell phenotype is encoded by modular signaling motifs within chimeric antigen receptors.
Kyle's lab is interested in harnessing the principles of modularity to engineer receptors and gene circuits to control cell functions.
The lab will use synthetic biology, medium- and high-throughput screens, and machine learning to: (1) Engineer immune cells to achieve robust and durable responses against various cancer targets, (2) Coordinate behavior of multiple engineered cell types in cancer, autoimmune disease, and payload delivery, (3) Control survival, proliferation, and differentiation of hematopoietic stem cells (HSCs) and immune cells, and (4) Explore principles of modularity related to engineering receptors and gene circuits in mammalian cells. -
Kara Davis
Associate Professor of Pediatrics (Hematology/Oncology)
Current Research and Scholarly InterestsChildhood cancers can be considered aberrations of normal tissue development. We are interested in understanding childhood cancers through the lens of normal development. Further, individual tumors are composed of heterogeneous cell populations, not all cells being equal in their ability to respond to treatment or to repopulate a tumor. Thus, we take single cell approach to determine populations of clinical relevance.
-
Mark M. Davis
Burt and Marion Avery Family Professor
Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.
-
Edgar Engleman
Professor of Pathology and of Medicine (Immunology and Rheumatology)
Current Research and Scholarly InterestsDendritic cells, macrophages, NK cells and T cells; functional proteins and genes; immunotherapeutic approaches to cancer, autoimmune disease, neurodegenerative disease and metabolic disease.
-
C. Garrison Fathman
Professor of Medicine (Immunology and Rheumatology), Emeritus
Current Research and Scholarly InterestsMy lab of molecular and cellular immunology is interested in research in the general field of T cell activation and autoimmunity. We have identified and characterized a gene (GRAIL) that seems to control regulatory T cell (Treg) responsiveness by inhibiting the Treg IL-2 receptor desensitization. We have characterized a gene (Deaf1) that plays a major role in peripheral tolerance in T1D. Using PBC gene expression, we have provisionally identified a signature of risk and progression in T1D.
-
Andrew Fire
George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics
Current Research and Scholarly InterestsWhile chromosomal inheritance provides cells with one means for keeping and transmitting genetic information, numerous other mechanisms have (and remain to be) discovered. We study novel cellular mechanisms that enforce genetic constancy and permit genetic change. Underlying our studies are questions of the diversity of inheritance mechanisms, how cells distinguish such mechanisms as "wanted" versus "unwanted", and of the consequences and applications of such mechanisms in health and disease.
-
Michael Fischbach
Liu (Liao) Family Professor
Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.
1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.
2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:
Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?
Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?
3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing. -
Matthew Frank
Assistant Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
BioDr. Matthew Frank, MD, PhD, is an Assistant Professor of Medicine in the Division of Blood and Marrow Transplantation and Cellular Therapy at Stanford University. Dr. Frank predominantly cares for patients with high-risk lymphoma and other blood cancers. He is a lead investigator of clinical trials evaluating the safety and effectiveness of cancer treatments called chimeric antigen receptor (CAR ) T therapy for patients with lymphomas and leukemias. Dr. Frank’s research focuses on developing methods to identify patients who are at high risk for relapse or developing side-effects after receiving CAR T therapy and to understand why these relapses and side-effects occur.
-
Stephen J. Galli, MD
Mary Hewitt Loveless, MD, Professor in the School of Medicine and Professor of Pathology and of Microbiology and Immunology
On Partial Leave from 10/01/2024 To 12/05/2024Current Research and Scholarly InterestsThe goals of Dr. Galli's laboratory are to understand the regulation of mast cell and basophil development and function, and to develop and use genetic approaches to elucidate the roles of these cells in health and disease. We study both the roles of mast cells, basophils, and IgE in normal physiology and host defense, e.g., in responses to parasites and in enhancing resistance to venoms, and also their roles in pathology, e.g., anaphylaxis, food allergy, and asthma, both in mice and humans.
-
Chris Garcia
Younger Family Professor and Professor of Structural Biology
Current Research and Scholarly InterestsStructural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.
-
Rogelio A. Hernández-López
Assistant Professor of Bioengineering and of Genetics
Current Research and Scholarly InterestsOur group works at the interface of mechanistic, synthetic, and systems biology to understand and program cellular recognition, communication, and organization. We are currently interested in engineering biomedical relevant cellular behaviors for cancer immunotherapy.
-
Laura Johnston
Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsClinical research in allogeneic and autologous hematopoietic cell transplantation (HCT), more specifically, allogeneic transplantation and graft versus host disease. Exploring methods of improving prevention and treatment of GVHD as well as the long term follow-up and/or quality of life of affected patients.
-
Amanda Kirane, MD, PhD, FACS, FSSO
Assistant Professor of Surgery (General Surgery)
BioDr. Kirane is a fellowship-trained, board-certified specialist in complex general surgical oncology. She is an Assistant Professor in the Department of Surgery, Section of Surgical Oncology, at Stanford University School of Medicine. Dr. Kirane serves as Director of Cutaneous Surgical Oncology at the Stanford Cancer Center and her clinical practice focuses on the diagnosis and treatment of melanoma and other skin cancers. She partners closely with patients and families to provide the most effective treatment approach possible. For each patient, she tailors an evidence-based, personalized care plan that is innovative, comprehensive, and compassionate.
Dr. Kirane is Principal Investigator of multiple studies in melanoma and mechanisms of resistance to immunotherapy, with focus on myeloid biology. Her current interests include immune response and novel therapies in melanoma, predictive modeling of patient responses using organoid technology, and translational biomarker development. She has led research into immune therapy for earlier stage melanoma using regionally directed therapy to augment immune response in melanoma and trials in surgical care in melanoma.
The National Institutes of Health, American Society of Clinical Oncology, the Melanoma Research Alliance, and others have funded her research. She has co-authored articles on her discoveries in the Journal of Clinical Investigation, Nature Communications, Nature Genetics, Cancer Research, Journal of Surgical Oncology, Annals of Surgery, Annals of Surgical Oncology, and elsewhere. Topics include intratumoral therapy, biomarker development, macrophage biology in melanoma and immunotheraputic resistance, and patient-derived organoid modeling. Dr. Kirane has presented updates on the management of melanoma and other cancers to her peers at meetings of the American College of Surgeons, Society of Surgical Oncology, and Society for Immunotherapy in Cancer.
Dr. Kirane has earned awards for her achievements in clinical care, research, and scholarship. The Society for Immunotherapy of Cancer, Society of Surgical Oncology, Memorial Sloan Kettering Cancer Center, and other prestigious organizations have honored her work. She is a fellow of the American College of Surgeons (FACS) and Society of Surgical Oncology (FSSO). She is a member of the Society for Immunotherapy of Cancer, American Association of Cancer Research, Society for Melanoma Research, Connective Tissue Oncology Society, Association of Academic Surgeons, and Association of Women Surgeons.
She volunteers her time and expertise on behalf of the Melanoma Research Foundation, members of her community in need, STEM programs for girls, and other initiatives. She also is fellowship trained in Physician Wellness and Wellbeing and teaches somatic technique, mindfulness-based stress reduction, meditation, and breathwork. -
Ronald Levy, MD
Robert K. and Helen K. Summy Professor in the School of Medicine
On Partial Leave from 05/16/2024 To 05/15/2025Current Research and Scholarly InterestsClinical Interests: lymphoma. Research Interests: Immunology and molecular biology of lymphoid malignancy; molecular vaccines for cancer.
-
Michael Lim, M.D.
Professor of Neurosurgery and, by courtesy, of Radiation Oncology (Radiation Therapy), of Medicine (Oncology), of Otolaryngology - Head & Neck Surgery (OHNS) and of Neurology and Neurological Sciences
BioDr. Lim is the Chair of the Department of Neurosurgery and a board-certified neurosurgeon specializing in brain tumors and trigeminal neuralgia.
Dr. Lim’s clinical interests include the treatment of benign and malignant brain tumors, with special interest in gliomas, meningiomas, metastatic tumors, and skull base tumors. Dr. Lim also specializes in surgical treatments for trigeminal neuralgia. During his time at Johns Hopkins, Dr. Lim built one of the largest brain tumor and trigeminal neuralgia practices and utilized the most advanced surgical technologies and techniques for his patients. As a passionate voice for patient experience, he has been recognized by his peers and patients for his integrity and compassionate care, including a Service Excellence Award from HealthNetwork Foundation.
As a mentor, he has garnered numerous teaching awards, including being honored as an outstanding teacher by Johns Hopkins University School of Medicine. He is actively involved in shaping education for neurosurgery and oncology across the United States and around the world. He is the recipient of the prestigious 2023 Abhijit Guha Award in Neuro-Oncology.
Dr. Lim’s research interests focus on harnessing the immune system to fight cancer. His laboratory focuses on understanding mechanisms of immune evasion by cancer cells. He has successfully translated his findings from the laboratory to the clinics and has conducted and led several large national immunotherapy clinical trials for brain tumors.
Dr. Lim’s bibliography contains well over 300 articles on topics such as immunotherapy for glioblastoma, long-term survival of glioma patients treated with stereotactic radiation, and treatment of neuropathic pain. His work has appeared in Science Translational Medicine, Clinical Cancer Research, Lancet Oncology, Nature Immunology, and many more publications. He also has written 20 book chapters and monographs.
Dr. Lim is a world leader in immunotherapy for brain tumors. In addition to being invited world-wide to give lectures and seminars, he has given platform presentations on the topics of immunotherapy for brain tumors, neurosurgical techniques and management of brain tumors at the American Society of Clinical Oncologists, American Academy of Neurological Surgeons, Radiological Society of North America, Annual Symposium on Brain and Spine Metastases, Congress of Neurological Surgeons, and other meetings. In addition, he has served as platform chairman of the CNS session at the American Society for Clinical Oncology conference.
Dr. Lim is a member of the American Society for Clinical Oncology, Congress of Neurological Surgeons, American Association of Neurological Surgeons, and Society for Neuro-Oncology. Dr. Lim served as the program co-chair of the Society for Neuro-Oncology and CNS section of the American Society for Clinical Oncology. He also served on many executive committees, including the Executive Committee for the Joint Tumor Section of the American Association of Neurological Surgeons and Congress of Neurological Surgeons.
Trigeminal neuralgia treatment: https://www.youtube.com/watch?v=-n8nvwkwZik
Trigeminal neuralgia patient stories: https://www.youtube.com/watch?v=kClePRPYlQs&t=1s -
Robert Lowsky
Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsDr. Lowsky's research is focused on understanding the role of regulatory T cells in the prevention of GVHD and in promoting immune tolerance following organ transplantation.
-
Crystal Mackall
Ernest and Amelia Gallo Family Professor and Professor of Pediatrics and of Medicine
Current Research and Scholarly InterestsRecent clinical studies, by us and others, have demonstrated that genetically engineered T cells can eradicate cancers resistant to all other therapies. We are identifying new targets for these therapeutics, exploring pathways of resistance to current cell therapies and creating next generation platforms to overcome therapeutic resistance. We have discovered novel insights into the biology of human T cell exhaustion and developed approaches to prevent and reverse this phenomenon.
-
Holden Maecker
Professor (Research) of Microbiology and Immunology
On Partial Leave from 09/15/2024 To 08/31/2025Current Research and Scholarly InterestsI'm interested in immune monitoring of T cell responses to chronic pathogens and cancer, and the correlation of T cell response signatures with disease protection.
-
Everett Meyer
Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy), of Pediatrics (Stem Cell Transplantation) and, by courtesy, of Surgery (Abdominal Transplantation)
Current Research and Scholarly InterestsResearch focus in T cell immunotherapy and T cell immune monitoring using high-throughput sequencing and genomic approaches, with an emphasis on hematopoietic stem cell transplantation, the treatment of graft-versus-host disease and immune tolerance induction.
-
David Miklos
Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsDr. Miklos is the Chief of BMT & Cell Therapy Program. He leads clinical trials treating patients with lymphoma. His correlative research studies: 1) tumor antigen quantification, 2) single cell functional product characterization, 3) CAR-FACS immune phenotyping of blood and tumor, and identifying mechanisms for CAR-T treatment Failure including antigen loss, CAR-T exhaustion, and CAR suppression.
-
Lori Muffly
Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsDr. Muffly's interests include investigator initiated clinical trials focused on cellular therapies for adults with acute lymphoblastic leukemia and acute myeloid leukemia. She also has an active health outcomes research program focused on patterns of care and improving access to care for adults with acute leukemia.
-
Hiromitsu (Hiro) Nakauchi
Professor of Genetics (Stem Cell)
Current Research and Scholarly InterestsTranslation of discoveries in basic research into practical medical applications
-
Robert Negrin
Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsOur labaratory focuses on the study of immune recognition by T and NK cells with special emphasis on graft vs host disease and graft vs tumor reactions. We utilize both murine and human systems in an effort to enhance graft vs tumor reactions while controlling graft vs host disease. We have developed bioluminescence models in collaboration with the Contag laboratory to study the trafficking of immune effector cells with a special emphasis on NK, T and regulatory T cells.
-
Derick Okwan
Assistant Professor of Pathology
Current Research and Scholarly InterestsBroadly, the Okwan lab’s primary interest is to understand how and why the immune system contributes to nearly all chronic diseases. The immune system of the modern human has evolved from a history of stress to the species: famines, continual bouts of lethal pandemics, as well as major climate/environmental and migratory changes that exposed the immune system to novel threats. At the forefront of these challenges are innate immune cells, particularly neutrophils, the most abundant leukocytes. For the first time in human history – at least in the western world- we live in an era of abundance. The Okwan lab is interested in understanding how this traumatic history creates a functional mismatch for the neutrophil, which we believe underpins their roles in chronic diseases of the modern era: cancer, cardiovascular disease, neurodegeneration, and autoimmune disorders. Rather than wholesale depletion of neutrophils and innate immune cells, we seek to identify novel approaches to leverage these cells to combat various diseases.
-
Peter Parham
Professor of Structural Biology and, by courtesy, of Microbiology and Immunology
Current Research and Scholarly InterestsThe Parham laboratory investigates the biology, genetics, and evolution of MHC class I molecules and NK cell receptors.
-
Sneha Ramakrishna
Assistant Professor of Pediatrics (Hematology/Oncology)
BioSneha Ramakrishna obtained her B. A. from the University of Chicago and her M.D. from the Cleveland Clinic Lerner College of Medicine at Case Western Reserve University. In medical school, through the Howard Hughes Medical Research Scholar Award, she joined Dr. Crystal Mackall’s laboratory, where she designed and developed various GD2 CAR-Ts and tested them in preclinical models. During her residency training in Pediatrics at the Children’s Hospital of Philadelphia, she cared for some of the first patients treated with CD19 CAR T cells, learning the power of this therapy first-hand. During her fellowship in Pediatric Hematology/Oncology at the Johns Hopkins/National Cancer Institute combined program, she worked with Dr. Terry Fry. She evaluated the mechanism of CD22 CAR T cell relapse in patients by developing an antigen escape model and establishing a deeper understanding of the effects of antigen density on CAR-T phenotype, expansion, and persistence (Fry…Ramakrishna…Mackall Nat Med, 2018; Ramakrishna, et al., Clinical Cancer Research, 2019). Since arriving at Stanford, Dr. Ramakrishna leads an interdisciplinary team that designs, develops, and successfully implements a robust correlative science platform for our novel CAR-T therapies. Analyzing patient samples from our first-in-human GD2 CAR-T trial (NCT04196413) treating a universally fatal cancer, diffuse midline glioma (DMG), we identified that intracerebroventricular CAR-T administration correlates with enhanced pro-inflammatory cytokines and reduced immunosuppressive cell populations in cerebrospinal fluid as compared to intravenous CAR-T administration (Majzner*, Ramakrishna*, et al., Nature 2022 *co-first authors). Her research program evaluates unique sets of patient samples using novel single-cell immune profiling to identify the drivers of CAR-T success or failure. Building on these findings, her team assesses approaches to enhance CAR-T efficacy and translate these findings to the clinic.
Clinically, Dr. Ramakrishna cares for children with solid tumors and treats hematologic, solid, and brain tumor pediatric patients with CAR T cell therapies in the Cancer Cellular Therapies program. -
Nathan Reticker-Flynn, PhD
Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsTo metastasize throughout our bodies, tumors subvert and co-opt our immune systems. Our lab seeks to uncover how these processes occur and develops therapies to put a stop to them.
-
Andrew Rezvani, M.D.
Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsClinical research in allogeneic hematopoietic cell transplantation
-
Maria Grazia Roncarolo
George D. Smith Professor of Stem Cell and Regenerative Medicine, Emerita
Current Research and Scholarly InterestsResearch Interests
Immunetolerance: Mechanisms underlying T-cell tolerance, induction of T-cell anergy and regulatory T cells; Immunomodulation: mAbs, proteins and low molecular weight compounds which can modulate T-cell activation; Primary immunodeficiencies: Characterization of molecular and immunological defects; Gene therapy: Gene transduction of hematopoietic cells for gene therapy in primary immunodeficiencies and metabolic diseases; Hematopoiesis: Mechanisms underlying growth and differentiation of hematopoietic stem cells; Transplantation: Immune reconstitution and T-cell tolerance after allogenic stem cell transplantation; Cytokines/Cytokine receptors: Role in regulation of immune and inflammatory responses
Clinical Interests
Primary Immunodeficiencies
Monogenic Autoimmune Disorders
Allogenic Bone Marrow Transplantation
Gene Therapy Clinical Trials
Cell Therapy Clinical Trials
Clinical Trials in Autoimmune Diseases and Organ Transplantation
Clinical Trials in Hemoglobinopathies -
Ansuman Satpathy
Associate Professor of Pathology
Current Research and Scholarly InterestsOur lab works at the interface of immunology, cancer biology, and genomics to study cellular and molecular mechanisms of the immune response to cancer. In particular, we are leveraging high-throughput genomic technologies to understand the dynamics of the tumor-specific T cell response to cancer antigens and immunotherapies (checkpoint blockade, CAR-T cells, and others). We are also interested in understanding the impact of immuno-editing on the heterogeneity and clonal evolution of cancer.
-
Liora Schultz
Clinical Assistant Professor, Pediatrics - Hematology & Oncology
BioI am currently postdoctoral research fellow pursuing immunotherapy research in the oncology department at Stanford University. My clinical training as a pediatric hematology oncology fellow at Memorial Sloan Kettering Cancer Center highlighted the desperate need for novel therapeutic options for a subtype of aggressive pediatric leukemia, Acute Myeloid Leukemia (AML). Despite our best standard of care for AML, long term survival rates range from 50-60% with an unacceptably high relapse rate of 40%. The urgent need for novel treatments inspired me to pursue a research project in adoptive immunotherapy, genetically modifying Tcells to express artificial T cell receptors, termed chimeric antigen receptors (CARs), that target AML specific antigens. In parallel to my clinical training, I constructed an AML specific CAR and demonstrated its ability to redirect T cell function mediating eradication of AML cells. As the field of CAR therapy rapidly advances, novel methods to optimize this therapeutic modality are imperative. To this end, supported by research demonstrating superior antitumor function of naïve derived effector T cells compared to central memory derived effector T cells, I am investigating whether preferential modification of naïve T cells to express CARs will generate a T cell subpopulation with increased efficacy. Consolidating my clinical and research experiences within highly academic institutes allows me to synthesize my pursuit of scientific rigor and commitment to the field of oncology, with a mission to achieve productive research and translatable results.
-
Judith Shizuru
Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
Current Research and Scholarly InterestsTransplantation of defined populations of allogeneic hematopoietic cells. Specifically, the way in which hematopoietic cell grafts alter antigen specific immune responses to allo-, auto- and viral antigens. The cellular and molecular basis of resistance to engraftment of allogeneic hematopoietic stem cells.
-
Surbhi Sidana, MD
Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
BioDr. Surbhi Sidana is an Associate Professor of Medicine at Stanford University and specializes in the treatment of multiple myeloma and related disorders. She leads the Myeloma CAR-T/Immunotherapy program at Stanford.
Dr Sidana grew up in Delhi, India, where she completed her initial medical training. She then moved to the U.S and completed her Internal Medicine Residency at Cleveland Clinic in Cleveland, Ohio, followed by Hematology/Oncology fellowship at Mayo Clinic in Rochester, MN. Following this, she completed an Advanced Hematology Fellowship in Myeloma, Amyloidosis and Related Disorders at Mayo Clinic in Rochester, MN before joining Stanford University as a faculty member in 2019, where she has led the development of the myeloma CAR-T and bispecific antibody program.
Dr Sidana has an active, broad research portfolio that includes clinical trials of novel therapies in myeloma and related disorders, translational research, epidemiologic and patient reported outcome studies. She has a special focus on research with immunotherapies such as CAR-T cell therapy and bispecific antibodies. She has published over 80 research manuscripts. Dr Sidana is the Leader of the Myeloma Disease Focused Group and the Associate Director for Clinical Research in the BMT and Cell Therapy Division at Stanford University. She also co-leads a multi-institutional collaboration on real world outcomes with immunotherapies in myeloma.
Dr Sidana is actively involved in and holds leadership positions in national and international professional societies. She co-chairs the Quality-of-Life Committee of the International Myeloma Working Group and is the Vice-Chair of the American Society of Hematology Committee on Communications. She also a member of the ASH Editor Search Committee and the SWOG Myeloma Committee. -
Melody Smith, MD, MS
Assistant Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)
BioDr. Smith is a board-certified, fellowship-trained medical oncologist and hematologist. She is an assistant professor in the Department of Medicine in the Division of Blood & Marrow Transplantation and Cellular Therapy.
She is also a physician-scientist who conducts extensive research. As a medical student, she completed a fellowship at the National Institutes of Health (NIH) in the Clinical Research Training (now, the Medical Research Scholars) Program. Subsequently, following her clinical fellowship, she was a post-doctoral researcher at Memorial Sloan Kettering Cancer Center. The research in her lab focuses on investigations of the biology of chimeric antigen receptor (CAR) T cells to improve the efficacy and safety of this therapy (1) by investigating donor (Nature Medicine, 2017) and off-the-shelf CAR T cells in mouse models and (2) by assessing mechanisms for the impact of the intestinal microbiome on CAR T cell response (Nature Medicine, 2022).
Dr. Smith presents the findings of her research at regional, national, and international conferences. Further, she has co-authored articles on topics within the field of cancer immunology, including cancer immunotherapy, stem cell transplantation, and CAR T cell therapy. Her work has appeared in journals, among others Nature, Nature Immunology, Nature Medicine, Blood, and Transplantation and Cellular Therapy. She serves a peer reviewer for publications in journals, such as NEJM Evidence, Science Advances, Blood, Cancer Cell, and Molecular Therapy. She also has contributed to chapters in books, including Pocket Oncology, Current Concepts and Controversies in Hematopoietic Cell Transplantation, and Advanced Concepts in Human Immunology: Prospects for Disease Control.
She has earned numerous honors; the American Society of Hematology (ASH), the Society for Immunotherapy of Cancer, the European Society for Blood and Marrow Transplantation, and several other professional organizations have recognized her achievements as a clinician, researcher, and scholar.
Dr. Smith is a member of the ASH Committee on Emerging Gene and Cell Therapies and the ASH Committee on Diversity, Equity & Inclusion. Additionally, she serves on committees within the institution and professional organizations focused on promoting diversity among hematology and cell therapy specialists. -
John B. Sunwoo, MD
Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor, by courtesy, of Dermatology
Current Research and Scholarly InterestsMy laboratory is focused on two primary areas of research: (1) the immune response to head and neck cancer and to a tumorigenic population of cells within these malignancies called cancer stem cells; (2) the developmental programs of a special lymphocyte population involved in innate immunity called natural killer (NK) cells; and (3) intra-tumor and inter-tumor heterogeneity.
-
Robert Waymouth
Robert Eckles Swain Professor of Chemistry and Professor, by courtesy, of Chemical Engineering
BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including bioactive polymers, synthetic fuels, and sustainable plastics. In one such breakthrough, Professor Waymouth and Professor Wender developed a new class of gene delivery agents.
Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.
Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. In collaboration with Dr. James Hedrick of IBM, we have developed a platform of highly active organic catalysts and continuous flow reactors that provide access to polymer architectures that are difficult to access by conventional approaches.
The Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver genes, drugs and probes into cells and live animals. These advances led to the joint discovery with the Wender group of a general, safe, and remarkably effective concept for RNA delivery based on a new class of synthetic cationic materials, Charge-Altering Releasable Transporters (CARTs). This technology has been shown to be effective for mRNA based cancer vaccines. -
Wen-Kai Weng, MD, PhD
Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy) and, by courtesy, of Dermatology
Current Research and Scholarly InterestsMy research interest is on immunotherapy (including allogeneic transplant) of cancer. I have studies the mechanism of monoclonal antibody therapy in lymphoma patients and am currently working on designing new strategy to enhance the clinical efficacy of antibody therapy by infusing expanded NK cells. I am also interested in using tumor vaccine along with hematopoietic cell transplant.
-
Joseph C. Wu, MD, PhD
Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology
Current Research and Scholarly InterestsDrug discovery, drug screening, and disease modeling using iPSC.
-
James L. Zehnder, M.D.
Professor of Pathology (Research) and of Medicine (Hematology)
Current Research and Scholarly InterestsMy main research and clinical interests include molecular pathogenesis of acquired cytopenias, genetic testing for inherited non-malignant hematologic disorders, next-generation sequencing approaches to T and B cell clonality testing, somatic mutations in cancer and assessment of minimal residual disease in cancer patients.