Stanford University


Showing 41-60 of 74 Results

  • Michael Lepech

    Michael Lepech

    Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment

    BioUnsustainable energy and material consumption, waste production, and emissions are some of today’s most pressing global concerns. To address these concerns, civil engineers are now designing facilities that, for example, passively generate power, reuse waste, and are carbon neutral. These designs are based foremost on longstanding engineering theory. Yet woven within this basic knowledge must be new science and new technologies, which advance the field of civil engineering to the forefront of sustainability-focused design.

    My research develops fundamental engineering design concepts, models, and tools that are tightly integrated with quantitative sustainability assessment and service life modeling across length scales, from material scales to system scales, and throughout the early design, project engineering, construction, and operation life cycle phases of constructed facilities. My research follows the Sustainable Integrated Materials, Structures, Systems (SIMSS) framework. SIMSS is a tool to guide the multi-scale design of sustainable built environments, including multi-physics modeling informed by infrastructure sensing data and computational learning and feedback algorithms to support advanced digital-twinning of engineered systems. Thus, my research applies SIMMS through two complementary research thrusts; (1) developing high-fidelity quantitative sustainability assessment methods that enable civil engineers to quickly and probabilistically measure sustainability indicators, and (2) creating multi-scale, fundamental engineering tools that integrate with sustainability assessment and facilitate setting and meeting sustainability targets throughout the life cycle of constructed facilities.

    Most recently, my research forms the foundation of the newly created Stanford Center at the Incheon Global Campus (SCIGC) in South Korea, a university-wide research center examining the potential for smart city technologies to enhance the sustainability of urban areas. Located in the smart city of Songdo, Incheon, South Korea, SCIGC is a unique global platform to (i) advance research on the multi-scale design, construction, and operation of sustainable built environments, (ii) demonstrate to cities worldwide the scalable opportunities for new urban technologies (e.g., dense urban sensing networks, dynamic traffic management, autonomous vehicles), and (iii) improve the sustainability and innovative capacity of increasingly smarter cities globally.

    With an engineering background in civil and environmental engineering and material science (BSE, MSE, PhD), and business training in strategy and finance (MBA), I continue to explore to the intersection of entrepreneurship education, innovation capital training, and the potential of startups to more rapidly transfer and scale technologies to solve some of the world's most challenging problems.

  • Raymond Levitt

    Raymond Levitt

    Kumagai Professor in the School of Engineering, Emeritus

    Current Research and Scholarly InterestsDr. Levitt founded and directs Stanford’s Global Projects Center (GPC), which conducts research, education and outreach to enhance financing, governance and sustainability of global building and infrastructure projects. Dr. Levitt's research focuses on developing enhanced governance of infrastructure projects procured via Public-Private Partnerships (PPP) delivery, and alternative project delivery approaches for complex buildings like full-service hospitals or data centers.

  • Zhiye Li

    Zhiye Li

    Research Engineer

    BioDr. Li is a research engineer in Civil and Environmental Engineering at Stanford University in the field of data-driven innovation and multiscale modeling on climate-resilient and sustainable civil infrastructures. She is also a researcher at the John A. Blume Earthquake Engineering Center at Stanford University and the Stanford Center at the Incheon Global Campus (SCIGC). Her interdisciplinary research integrates multiphysics model, machine learning, life cycle assessment and material innovation to accelerate the global net-zero transition. Within civil engineering, her research focuses on developing new building materials and building practices for more sustainable built environments. She researched at Hopkins Extreme Materials Institute and completed her Ph.D. in Civil Engineering at Johns Hopkins University.

  • Christian Linder

    Christian Linder

    Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering

    BioChristian Linder is a Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering. Through the development of novel and efficient in-house computational methods based on a sound mathematical foundation, the research goal of the Computational Mechanics of Materials (CM2) Lab at Stanford University, led by Dr. Linder, is to understand micromechanically originated multi-scale and multi-physics mechanisms in solid materials undergoing large deformations and fracture. Applications include sustainable energy storage materials, flexible electronics, and granular materials.

    Dr. Linder received his Ph.D. in Civil and Environmental Engineering from UC Berkeley, an MA in Mathematics from UC Berkeley, an M.Sc. in Computational Mechanics from the University of Stuttgart, and a Dipl.-Ing. degree in Civil Engineering from TU Graz. Before joining Stanford in 2013 he was a Junior-Professor of Micromechanics of Materials at the Applied Mechanics Institute of Stuttgart University where he also obtained his Habilitation in Mechanics. Notable honors include a Fulbright scholarship, the 2013 Richard-von-Mises Prize, the 2016 ICCM International Computational Method Young Investigator Award, the 2016 NSF CAREER Award, and the 2019 Presidential Early Career Award for Scientists and Engineers (PECASE).

  • Amory B Lovins

    Amory B Lovins

    Adjunct Professor

    Current Role at StanfordAdjunct Professor of Civil and Environmental Engineering, Sept 2019 – June 2024. Expected to be retitled Lecturer in CEE thereafter, with the same responsibilities, because the definition changed and Lovins lacks a PhD. Visiting Scholar, Precourt Institute for Energy.

  • Richard Luthy

    Richard Luthy

    Silas H. Palmer Professor of Civil Engineering and Professor, by courtesy, of Oceans

    Current Research and Scholarly InterestsDick Luthy studies sustainable solutions to urban water supplies and management of contaminated sediments. Current work includes experimentation and systems-level analysis of innovative, decentralized water reuse and management of urban stormwater for water supply. He is working with a group to assess strategies for coping with reduced water imports and requirements from the State's Water Board to leave more water in California rivers for ecosystems.

  • Gilbert Masters

    Gilbert Masters

    Professor (Teaching) of Civil and Environmental Engineering, Emeritus

    BioGILBERT M. MASTERS
    MAP EMERITUS PROFESSOR OF SUSTAINABLE ENERGY
    B.S. (1961) AND M.S. (1962) UNIVERSITY OF CALIFORNIA, LOS ANGELES
    PH.D. (1966) Electrical Engineering, STANFORD UNIVERSITY

    Gil Masters has focused on energy efficiency and renewable energy systems as essential keys to slowing global warming, enhancing energy security, and improving conditions in underserved, rural communities. Although officially retired in 2002, he has continued to teach CEE 176A: Energy-Efficient Buildings, and CEE 176B: Electric Power: Renewables and Efficiency. He is the author or co-author of ten books, including Introduction to Environmental Engineering and Science (3rd edition, 2008), Renewable and Efficient Electric Power Systems, (2nd edition, 2013), and Energy for Sustainability: Technology, Policy and Planning (2nd edition, 2018). Professor Masters has been the recipient of a number of teaching awards at Stanford, including the university's Gores Award for Excellence in Teaching, and the Tau Beta Pi teaching award from the School of Engineering. Over the years, more than 10,000 students have enrolled in his courses. He served as the School of Engineering Associate Dean for Student Affairs from 1982-1986, and he was the Interim Chair of the Department of Civil and Environmental Engineering in 1992-93.

  • Eduardo Miranda

    Eduardo Miranda

    Professor of Civil and Environmental Engineering

    Current Research and Scholarly InterestsRegional seismic risk assessment, ground motion directionality

  • William Mitch

    William Mitch

    Professor of Civil and Environmental Engineering

    BioBill Mitch received a B.A. in Anthropology (Archaeology) from Harvard University in 1993. During his studies, he excavated at Mayan sites in Belize and surveyed sites dating from 2,000 B.C. in Louisiana. He switched fields by receiving a M.S. degree in Civil and Environmental Engineering at UC Berkeley. He worked for 3 years in environmental consulting, receiving his P.E. license in Civil Engineering in California. Returning to UC Berkeley in 2000, he received his PhD in Civil and Environmental Engineering in 2003. He moved to Yale as an assistant professor after graduation. His dissertation received the AEESP Outstanding Doctoral Dissertation Award in 2004. At Yale, he serves as the faculty advisor for the Yale Student Chapter of Engineers without Borders. In 2007, he won a NSF CAREER Award. He moved to Stanford University as an associate professor in 2013.

    Employing a fundamental understanding of organic chemical reaction pathways, his research explores links between public health, engineering and sustainability. Topics of current interest include:

    Public Health and Emerging Carcinogens: Recent changes to the disinfection processes fundamental to drinking and recreational water safety are creating a host of highly toxic byproducts linked to bladder cancer. We seek to understand how these compounds form so we can adjust the disinfection process to prevent their formation.

    Global Warming and Oceanography: Oceanic dissolved organic matter is an important global carbon component, and has important impacts on the net flux of CO2 between the ocean and atmosphere. We seek to understand some of the important abiotic chemical reaction pathways responsible for carbon turnover.

    Sustainability and Persistent Organic Pollutants (POPs): While PCBs have been banned in the US, we continue to produce a host of structurally similar chemicals. We seem to understand important chemical pathways responsible for POP destruction in the environment, so we can design less persistent and problematic chemicals in the future.

    Engineering for Sustainable Wastewater Recycling: The shortage of clean water represents a critical challenge for the next century, and has necessitated the recycling of wastewater. We seek to understand ways of engineer this process in ways to minimize harmful byproduct formation.

    Carbon Sequestration: We are evaluating the formation of nitrosamine and nitraminecarcinogens from amine-based carbon capture, as well as techniques to destroy any of these byproducts that form.

  • Stephen Monismith

    Stephen Monismith

    Obayashi Professor in the School of Engineering and Professor of Oceans

    Current Research and Scholarly InterestsHydrodynamics of lakes, estuaries, coral reefs, kelp forests and the coastal ocean

  • Hae Young Noh

    Hae Young Noh

    Associate Professor of Civil and Environmental Engineering

    BioHae Young Noh is an associate professor in the Department of Civil and Environmental Engineering. Her research introduced the new concept of “structures as sensors” to enable physical structures (e.g., buildings and vehicle frames) to be user- and environment-aware. In particular, these structures indirectly sense humans and surrounding environments through their structural responses (i.e., vibrations) by inferring the desired information (e.g., human behaviors, environmental conditions, heating and cooling system performance), instead of directly measuring the sensing targets with additional dedicated sensors (e.g., cameras, motion sensors). This concept brought a paradigm shift in how we view these structures and how the structures interact with us.
    Traditionally, structures that we inhabit (such as buildings or vehicles) are considered as passive and unchanging objects that we need to monitor and control, utilizing a dense set of sensors to collect information. This has often been complicated by “noise” caused by the occupants and environments. For example, building vibrations induced by indoor and outdoor environmental and operational conditions (e.g., people walking around, traffic outside, heating system running, etc.), have been often seen as noise that needs to be removed in traditional building science and structural engineering; however, they are a rich source of information about structure, users, environment, and resources. Similarly, in vehicle engineering, researchers and engineers have been investigating control and dynamics to reduce vehicle vibration for safety and comfort. However, vibrations measured inside vehicles contain information about transportation infrastructure, vehicle itself, and driver.
    Noh's work utilizes this “noise” to empower the structures with the ability to perceive and understand the information about users and surroundings using their own responses, and actively adopt and/or interact to enhance their sustainability and the occupants’ quality of life. Since she utilizes the structure itself as a sensing medium, information collection involves a simpler set of hardware that can be easily maintained throughout the structural lifetime. However, the analysis of data to separate the desired information becomes more challenging. This challenge is addressed through high-rate dynamic sensing and multi-source inferencing. Ultimately, her work aims to allow structural systems to become general sensing platforms that are easier and more practical to deploy and maintain in a long-term.
    At Stanford University, Noh received her PhD and MS degrees in the CEE department and her second MS degree in Electrical Engineering. Noh earned her BS in Mechanical and Aerospace Engineering at Cornell University.

  • Leonard Ortolano

    Leonard Ortolano

    UPS Foundation Professor of Civil Engineering in Urban and Regional Planning, Emeritus

    BioOrtolano is concerned with environmental and water resources policy and planning. His research stresses environmental policy implementation in developing countries and the role of non-governmental organizations in environmental management. His recent interests center on corporate environmental management.

  • Khalid Osman

    Khalid Osman

    Assistant Professor of Civil and Environmental Engineering and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioKhalid Osman joined the department as an Assistant Professor of Civil and Environmental Engineering in autumn of 2022. His research spans the use of mixed quantitative-qualitative methods to assess public perceptions of water infrastructure, water conservation efforts, and the management of existing infrastructure systems to meet the needs of those being served by the systems. He currently is focused on the operationalization of equity in water sector infrastructure, conceptualizing equity in decentralized water and sanitation systems, water affordability, and stakeholder-community engagement in sustainable civil infrastructure systems for achieving environmental justice.

    Khalid was the holder of a Bill and Melinda Gates Millennium Scholars Graduate Fellowship and also a Ford Foundation Predoctoral Fellowship.

  • Nicholas Ouellette

    Nicholas Ouellette

    Professor of Civil and Environmental Engineering

    Current Research and Scholarly InterestsThe Environmental Complexity Lab studies self-organization in a variety of complex systems, ranging from turbulent fluid flows to granular materials to collective motion in animal groups. In all cases, we aim to characterize the macroscopic behavior, understand its origin in the microscopic dynamics, and ultimately harness it for engineering applications. Most of our projects are experimental, though we also use numerical simulation and mathematical modeling when appropriate. We specialize in high-speed, detailed imaging and statistical analysis.

    Our current research includes studies of turbulence in two and three dimensions, with a focus on coherent structures and the geometry of turbulence; the transport of inertial, anisotropic, and active particles in turbulence; the erosion of granular beds by fluid flows and subsequent sediment transport; quantitative measurements of collective behavior in insect swarms and bird flocks; the stability of ocean ecosystems; neural signal processing; and uncovering the natural, self-organized spatiotemporal scales in urban systems.

  • Ram Rajagopal

    Ram Rajagopal

    Associate Professor of Civil and Environmental Engineering and of Electrical Engineering

    BioRam Rajagopal is an Associate Professor of Civil and Environmental Engineering at Stanford University, where he directs the Stanford Sustainable Systems Lab (S3L), focused on large-scale monitoring, data analytics and stochastic control for infrastructure networks, in particular, power networks. His current research interests in power systems are in the integration of renewables, smart distribution systems, and demand-side data analytics.

    He holds a Ph.D. in Electrical Engineering and Computer Sciences and an M.A. in Statistics, both from the University of California Berkeley, Masters in Electrical and Computer Engineering from University of Texas, Austin and Bachelors in Electrical Engineering from the Federal University of Rio de Janeiro. He is a recipient of the NSF CAREER Award, Powell Foundation Fellowship, Berkeley Regents Fellowship and the Makhoul Conjecture Challenge award. He holds more than 30 patents and several best paper awards from his work and has advised or founded various companies in the fields of sensor networks, power systems, and data analytics.

  • Martin Reinhard

    Martin Reinhard

    Professor (Research) of Civil and Environmental Engineering, Emeritus

    BioReinhard studies the fate of organic substances in the subsurface environment and develops technologies for the remediation of groundwater contaminated with chlorinated and non-chlorinated hydrocarbon compounds. His research is concerned with mechanistic aspects of chemical and biological transformation reactions in soils, natural waters, and treatment systems.

  • Brian Sedar

    Brian Sedar

    Adjunct Professor

    Bio35 years of experience in EPC work spanning project controls, procurement, project development, construction, project management and operations. Bechtel Partner and Project Director for three of Bechtel’s largest international transportation infrastructure projects (click on Projects under Research), High Speed 1 in the UK, Hamad International Airport in Qatar and Upgrades for three London Underground lines. Served as General Manager of Bechtel’s Telecoms & Industrial business, Global Procurement Manager and launched its Global Water business. Now one of Stanford's most experienced construction practitioner-instructors.

  • Serdar Selamet

    Serdar Selamet

    Visiting Assoc Prof

    BioAssoc. Professor with focus on Fire Engineering, Steel Structures and Numerical Modeling.